首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Lysosomal membrane permeabilization and subsequent leakage of lysosomal hydrolases into the cytosol are considered as the major hallmarks of evolutionarily conserved lysosome-dependent cell death. Contradicting this postulate, new sensitive methods that can detect a minimal lysosomal membrane damage have demonstrated that lysosomal leakage does not necessarily equal cell death. Notably, cells are not only able to survive minor lysosomal membrane permeabilization, but some of their normal functions actually depend on leaked lysosomal hydrolases. Here we discuss emerging data suggesting that spatially and temporally controlled lysosomal leakage delivers lysosomal hydrolases to specific subcellular sites of action and controls at least three essential cellular processes, namely mitotic chromosome segregation, inflammatory signaling, and cellular motility.  相似文献   

2.
We have investigated the distribution of newly synthesized lysosomal enzymes in endocytic compartments of normal rat kidney (NRK) cells. The mannose-6-phosphate (Man6-P) containing lysosomal enzymes could be iodinated in situ after internalization of lactoperoxidase (LPO) by fluid phase endocytosis and isolated on CI-MPR affinity columns. For EM studies, the ectodomain of the CI-MPR conjugated to colloidal gold was used as a probe specific for the phosphomannosyl marker of the newly synthesized hydrolases. In NRK cells, approximately 20-40% of the phosphorylated hydrolases present in the entire pathway were found in early endocytic structures proximal to the 18 degrees C temperature block including early endosomes. These structures were characterized by a low content of endogenous CI-MPR and were accessible to fluid phase markers internalized for 5-15 min at 37 degrees C. The bulk of the phosphorylated lysosomal enzymes was found in late endocytic structures distal to the 18 degrees C block, rich in endogenous CI-MPR and accessible to endocytic markers internalized for 30-60 min at 37 degrees C. The CI-MPR negative lysosomes were devoid of phosphorylated hydrolases. This distribution was unchanged in cells treated with Man6-P to block recapture of secreted lysosomal enzymes. However, lysosomal enzymes were no longer detected in the early endosomal elements of cells treated with cycloheximide. Immunoprecipitation of cathepsin D from early endosomes of pulse-labeled cells showed that this hydrolase is a transient component of this compartment. These data indicate that in NRK cells, the earliest point of convergence of the lysosomal biosynthetic and the endocytic pathways is the early endosome.  相似文献   

3.
The beige mouse is an animal model for the human Chediak-Higashi syndrome, a disease characterized by giant lysosomes in most cell types. In mice, treatment with androgenic hormones causes a 20-50-fold elevation in at least one kidney lysosomal enzyme, beta-glucuronidase. Beige mice treated with androgen had significantly higher kidney beta-glucuronidase, beta-galactosidase, and N-acetyl-beta-D-glucosaminidase (hexosaminidase) levels than normal mice. Other androgen-inducible enzymes and enzyme markers for the cytosol, mitochondria, and peroxisomes were not increased in kidney of beige mice. No significant lysosomal enzyme elevation was observed in five other organs of beige mice with or without androgen treatment, nor in kidneys of beige females not treated with androgen. Histochemical staining for glucuronidase together with subcellular fractionation showed that the higher glucuronidase content of beige mouse kidney is caused by a striking accumulation of giant glucuronidase-containing lysosomes in tubule cells near the corticomedullary boundary. In normal mice lysosomal enzymes are coordinately released into the lumen of the kidney tubules and appreciable amounts of lysosomal enzymes are present in the urine. Levels of urinary lysosomal enzymes are much lower in beige mice than in normal mice. It appears that lysosomes may accumulate in beige mice because of defective exocytosis resulting either from decreased intracellular motility of lysosomes or from their improper fusion with the plasma membrane. A similar defect could account for characteristics of the Chediak-Higashi syndrome.  相似文献   

4.
Isoelectric focusing was used to investigate the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase, beta-galactosidase and beta-N-acetylhexosaminidase in the following, previously characterized subcellular fractions from rat kidney: a special rough microsomal fraction, enriched up to 9-fold over the homogenate in acid hydrolases; a smooth microsomal fraction; a Golgi membrane fraction enriched about 2.5-fold in acid hydrolases and 10- to 20-fold in several glycosyl transferases; and a lysosomal fraction enriched up to 25-fold in acid hydrolases. The electro-focusing behavior of the hydrolases in these fractions was markedly sensitive to the autolytic changes that occur under acidic conditions, even at 4 degrees C. Autolysis was minimized by extracting fractions in an alkaline medium (0.2% Triton X-100, 0.1 M sodium glycinate buffer, pH 10, 0.1 % p-nitrophenyloxamic acid) and adding p-nitrophenyloxamic acid (0.1 %), AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND cathepsin D, to the pH gradient. The enzymes in the lysosomal fraction displayed a characteristic bimodal or trimodal distribution. Arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in an acidic form with an isoelectric point of 4.4, and a basic form with an isoelectric point of 6.2, 6.7 and 8.0, respectively. Acid phosphatase and beta-galactosidase occurred in an acidic, intermediate and basic form with isoelectric points of about 4. 1, 5.6 and 7.4, respectively. In the special rough microsomal fraction these enzymes were mostly in a basic form with isoelectric points between 7.5 and 9; these were 1-2 units higher than the corresponding basic forms in the lysosomal fraction. Treatment of extracts of the rough microsomal fraction with bacterial neuraminidase raised the isoelectric points of all five hydrolases by 1-2.5 units, indicating the presence of some N-acetylneuraminic acid residues in these basic glycoenzymes. The hydrolases in the Golgi fraction were largely in an acidic form with isoelectric points similar to or lower than those of the corresponding acidic components in the lysosomal fraction. The hydrolases in the smooth microsomal fraction showed isoelectric-focusing patterns intermediate between those in the rough microsomal and the Golgi fractions. These findings support the following scheme for the synthesis, transport and packaging of the lysosomal enzymes. Each hydrolase is synthesized in a restricted portion of the r  相似文献   

5.
1. A special population of rough microsomal material (microsomes) rich in lysosomal acid hydrolases was separated by isopycnic centrifugation as a discrete fraction (RM(2)) from the bulk of rough microsomal material in rat kidney because of its greater density. 2. The specific activities of five acid hydrolases in the RM(2) fraction were approximately one-half those of a purified lysosomal (L) fraction and 10- to 30-fold greater than those of an ordinary rough microsomal (RM(1)) fraction. 3. These special rough microsomes have a distinctive ultrastructure and electron-cytochemical properties. Their cisternal content resembles the matrix of lysosomes in that it is electron-dense, osmiophilic and plumbophilic and gives a positive reaction for acid phosphatase activity. 4. Polyacrylamide-gel electrophoresis of soluble proteins from the L fraction resolved nine anionic glycoproteins, most of which exhibit acid hydrolase activities (Goldstone & Koenig, 1970, 1973; Goldstone et al., 1971a). The most anionic glycoprotein is the acidic lipoglycoprotein of the lysosomal matrix (Goldstone et al., 1970). 5. Polyacrylamide-gel electrophoresis of soluble proteins from the RM(2) fraction resolved two cationic glycoproteins with acid hydrolase activities (Goldstone & Koenig, 1973) and an anionic glycoprotein with the same electrophoretic mobility as the lysosomal lipoglycoprotein, but without its lipid constituents or capacity to bind the basic fluorochrome Acridine Orange. These constituents are considered to be the precursors of the lysosomal glycoproteins.  相似文献   

6.
Journet A  Chapel A  Kieffer S  Roux F  Garin J 《Proteomics》2002,2(8):1026-1040
To date, about fifty lysosomal hydrolases have been identified, and most of them are targeted towards the lysosomes through a specific mannose-6-phosphate (M-6-P) tag. As more lysosomal hydrolases were expected to be discovered, we performed a proteomic study of soluble lysosomal proteins. Human cells were induced to secrete M-6-P proteins which were affinity purified on immobilized M-6-P receptor. The purified proteins were resolved by two-dimensional electrophoresis and analyzed by mass spectrometry. Twenty-two proteins were identified, among which 16 were well-known lysosomal hydrolases. The remaining species distributed as follows: epididymis-specific alpha-mannosidase is a new mannosidase homolog, cystatin F and CREG (cellular repressor of E1A-stimulated genes) were previously identified as M-6-P proteins (Journet et al., Electrophoresis 2000, 21, 3411-3419), and the last three, which are not hydrolases, were up to now considered as nonlysosomal. This two-dimensional reference map of human U937 M-6-P proteins was afterwards used for comparison with M-6-P proteins purified either from U937 differentiated into macrophage-like cells, or from human breast cancer MCF7 cells. Phorbol ester induced differentiation of U937 cells led to limited proteolytic cleavage or maturation of a discrete number of hydrolases. Five additional lysosomal hydrolases were identified from MCF7 samples. These results prove the usefulness of such a procedure to analyze the lysosomal content of various cell lines, to discover new M-6-P proteins, as well as to point towards unknown biological processes.  相似文献   

7.
Hydrolase secretion is a consequence of membrane recycling   总被引:3,自引:1,他引:2       下载免费PDF全文
Acanthamoeba releases lysosomal hydrolases continuously into the culture medium. This release is specific for lysosomal hydrolases, but not other cellular proteins, and is energy dependent. The secreted hydrolases can be separated into two groups on the basis of their secretion kinetics: one is secreted at approximately 15% of the cellular activity per hour and the other at approximately 5%. Intracellularly the lysosomal hydrolases are restricted almost exclusively to secondary lysosomes where the hydrolases demonstrate a differential pH-dependent binding to membrane. Hydrolase secretion is not the result of secondary lysosomes' fusing with the plasma membrane since soluble and particulate lysosomal contents are not released at the same rate. Together the data suggest that the secreted hydrolases are trapped in shuttle vesicles that cycle membrane from secondary lysosomes to the cell surface. The inner membrane and content of these vesicles undergo a marked pH shift when, following fragmentation from lysosomes, these vesicles fuse with plasma membrane. This rapid pH shift and the differential pH-dependent membrane binding of hydrolases appear to account for the heterogeneous hydrolase secretion kinetics.  相似文献   

8.
The genetics and phenotypic features (light and electron microscopy) of a secretory mutant, MS-1 of Tetrahymena thermophila blocked in secretion of lysosomal acid hydrolases have been analyzed. Although blocked constitutively in secretion, MS-1 contains active lysosomal hydrolases in amounts equivalent to the wild type. The 3:1 segregation in F-2 in sib crosses and the 1:1 segregation in test crosses indicate that the block in secretion of lysosomal hydrolases is controlled by a recessive single gene locus termed sec. The sec allele of MS-1 proved also to be responsible for the highly vacuolarized phenotype the mutant developed when it was transferred from nutrient medium into buffers of low ionic strength. Deletion mapping by crossing MS-1 with nullisomic strains, all secreting lysosomal hydrolases at wild-type rates, was performed. The sec phenotype was expressed in monosomic-4 progeny only, indicating that the sec allele is located on chromosome 4 of T. thermophila.  相似文献   

9.
1. The following fractions were prepared from rat kidney and characterized ultrastructurally, biochemically and enzymically: (a) an ordinary rough microsomal (RM(1)) fraction; (b) a special rough microsomal (RM(2)) fraction enriched seven- to nine-fold in acid hydrolases over the homogenate; (c) a smooth microsomal (SM) fraction; (d) a Golgi (GM) fraction enriched 2.5-fold in acid hydrolases and 10-, 15- and 20-fold in sialyltransferase, N-acetyl-lactosamine synthetase and galactosyltransferase respectively; (e) a lysosomal (L) fraction enriched 15- to 23-fold in acid hydrolases. The frequency of Golgi sacs and tubules seen in the electron microscope and the specific activity of the three glycosyltransferases in these fractions increased in the order: RM(2)相似文献   

10.
The genetics and phenotypic features (light and electron microscopy) of a secretory mutant, MS-1, of Tetrahymena thermophila blocked in secretion of lysosomal acid hydrolases have been analyzed. Although blocked constitu-tively in secretion, MS-1 contains active lysosomal hydrolases in amounts equivalent to the wild type. The 3:1 segregation in F-2 in sib crosses and the 1:1 segregation in test crosses indicate that the block in secretion of lysosomal hydrolases is controlled by a recessive single gene locus termed sec. The sec allele of MS-1 proved also to be responsible for the highly vacuolarized phenotype the mutant developed when it was transferred from nutrient medium into buffers of low ionic strength. Deletion mapping by crossing MS-1 with nullisomic strains, all secreting lysosomal hydrolases at wild-type rates, was performed. The sec phenotype was expressed in monosomic-4 progeny only, indicating that the sec allele is located on chromosome 4 of T. thermophila. © 1992 Wiley-Liss, Inc.  相似文献   

11.
Electron inactivation analysis with 16 MeV electrons was used to determine the functional target size of a number of commonly studied lysosomal hydrolases. Observed values ranged from a low of 62 000 +/- 4000 Da for beta-galactosidase to a high of 200 000 +/- 17 500 Da (mouse beta-glucuronidase). One group of lysosomal hydrolases (N-acetyl-beta-glucosaminidase, N-acetyl-beta-galactosaminidase, alpha-galactosidase, beta-mannosidase, beta-glucosidase, arylsulphatase A and sphingomyelinase) had target sizes in the range 100 000-120 000 Da, whereas alpha-glucosidase and alpha-fucosidase exist as complex multimers in the 150 000-160 000 Da range. Analysis of freeze-dried cell material showed little evidence of species (mouse versus human) variation in the functional size of most lysosomal hydrolases with the exception of beta-glucuronidase. Our findings suggest the potential usefulness of lysosomal hydrolases as endogenous marker enzymes in studies where the target size of proteins of unknown molecular mass is to be determined.  相似文献   

12.
THE role of lysosomal enzymes in intracellular digestion is now well established [11]. Most often we think of lysosomal hydrolases in catabolism of endogenous or foreign material taken up by endocytosis. There is however, a number of reports dealing with the release of acid hydrolases into the extracellular fluid in a variety of eukaryote cells. These cells range from Saccharomyces cerevisiae [15], Dictyostelium discoideum [10], Leishmania donovani [20], Acanthamoeba castellani [22], Entamoeba histolytica [12, 31], and species of Tetrahymena [1–3, 6] to mammalian cells in culture [49]. Concerning the latter, fibroblasts and hepatocytes in culture release acid hydrolases to the extracellular medium, but only if the synthesis of a specific recognition marker is impaired in the cells. This marker (man-nose-6-phosphate) is used for receptor mediated segregation of lysosomal enzymes into the lysosomal compartments. If the receptor or the marker are lacking, the hydrolases fail to enter the lysosomal compartment, and are secreted in immature form together with molecules belonging to the constitutive secretory pathway of the cells [8, 49]. Such a release of acid hydrolases seems to occur spontaneously from mammalian osteoclasts [4]. Macrophages, on the other hand, need a specific stimulation for their release process [40]. In lower eukaryotes the release may  相似文献   

13.
Most lysosomal storage diseases are caused by defects in genes encoding for acidic hydrolases. Deficiency of an enzyme involved in the catabolic pathway of N-linked glycans leads to the accumulation of the respective substrate and consequently to the onset of a specific storage disorder. Di-N-acetylchitobiase and core specific α1-6mannosidase represent the only exception. In fact, to date no lysosomal disease has been correlated to the deficiency of these enzymes. We generated di-N-acetylchitobiase-deficient mice by gene targeting of the Ctbs gene in murine embryonic stem cells. Accumulation of Man2GlcNAc2 and Man3GlcNAc2 was evaluated in all analyzed tissues and the tetrasaccharide was detected in urines. Multilamellar inclusion bodies reminiscent of polar lipids were present in epithelia of a scattered subset of proximal tubules in the kidney. Less constantly, enlarged Kupffer cells were observed in liver, filled with phagocytic material resembling partly digested red blood cells. These findings confirm an important role for lysosomal di-N-acetylchitobiase in glycans degradation and suggest that its deficiency could be the cause of a not yet described lysosomal storage disease.  相似文献   

14.
Six lysosomal hydrolases were studied in tissues of human placenta, amnion, decidua, and myometrium obtained in the 2nd and 3rd trimester. No significant increase in the activity of any lysosomal hydrolase was found in the 3rd-trimester values compared with those obtained in the 2nd trimester. Thus, the increased activity of lysosomal hydrolases in maternal serum at term, previously described in several studies, seems not to be paralleled by a corresponding increase in the activity of these enzymes in the tissues of the pregnant uterus. We speculate that the increase in maternal serum towards term may reflect a macrophage activation initiated by elevated estrogen concentrations in the 3rd trimester.  相似文献   

15.
Lymphoblastoid cells transformed by Epstein-Barr virus from peripheral lymphocytes of normal individuals and I-cell disease (ICD) patients were used for the enzymic study of lysosomal hydrolases and N-acetylglucosamine 1-phosphotransferase. ICD lymphoblastoid cells secreted a larger amount of hydrolases into medium than normal cells, although the intracellular hydrolases were not deficient in ICD cells. The stimulating effect of 10 mM ammonium chloride on secretion of hydrolases was found only with normal cells, and not with ICD cells, indicating that the hydrolase molecule bearing mannose 6-phosphate was secreted. The ICD lymphoblastoid cells retained the enzymologic characteristics of both lysosomal hydrolases and N-acetylglucosamine 1-phosphotransferase seen in ICD fibroblasts, which allows us to study the pathophysiology of ICD in cells other than fibroblasts.  相似文献   

16.
1. Some lysosomal populations in the rat kidney cortex appear to be mechanically weak and are readily disrupted by gentle homogenization, while other populations remain intact even after repeated homogenization. 2. Lysosomes in the rat kidney cortex appear to be resistant to hypertonic media but are readily disrupted under hypotonic conditions. 3. Lysosomes in rat kidney cortex are readily disrupted when incubated in isotonic sucrose at 37 degrees C. 4. Measurement of total and free activity of three acid hydrolases: N-acetyl-beta-D-glucosaminidase (NAG), acid beta-galactosidase and acid beta-glycerophosphatase, indicates that the latency of these enzymes is relatively low in the homogenate (10-29%) and the ML-fraction (14-42%), but high (60-95%) in the purified large lysosomes (protein droplets). 5. The latency of purified small lysosomes is relatively lower (30-60%) than that of large lysosomes, suggesting that small lysosome populations are relatively permeable to the acid hydrolase substrates. 6. Latency variations of acid hydrolases amongst subcellular fractions appear to reflect the heterogeneity of lysosomal populations present in the kidney cortical homogenate.  相似文献   

17.
The gastrocnemius, a fast-twitch white muscle, and the soleus, a slow-twitch red muscle, were studied in A/J mice. The specific activities of the lysosomal hydrolases, beta-D-glucuronidase, hexosaminidase, beta-D-galactosidase and arylsulphatase, the inner-mitochondrial-membrane enzyme cytochrome c oxidase, and the outer-mitochondrial-membrane enzyme monoamine oxidase, were greater in the soleus than in the gastrocnemius. The specific activities of the lysosomal hydrolases and cytochrome c oxidase in the gastrocnemius and soleus were substantially higher in male mice than in female mice. Orchiectomy abolished this sex difference. Testosterone increased the activities of the lysosomal hydrolases and cytochrome c oxidase and coincidentally induced muscle hypertrophy and an accretion of protein and RNA, but total DNA remained constant. Monoamine oxidase was unaffected by sex, orchiectomy and testosterone. These findings indicate that endogenous androgens regulate the activity of enzymes associated with lysosomes and the inner mitochondrial membrane, as well as muscle fibre growth in mouse skeletal muscle.  相似文献   

18.
The aorta in male mice shows higher activities of several lysosomal hydrolases and of cytochrome c oxidase, an inner mitochondrial membrane enzyme, than in female mice. Orchiectomy abolishes this sex difference, whereas testosterone administration induces an accretion of RNA and protein and elevated activities of lysosomal hydrolases and cytochrome c oxidase. However, the outer mitochondrial membrane enzyme monoamine oxidase is unaffected by sex, orchiectomy or testosterone. Thus, androgens regulate cell growth and enzymes associated with lysosomes and the inner mitochondrial membrane.  相似文献   

19.
Rat Brain has a lipase which hydrolyzes diacylglycerol at an optimal pH of 4.8 (1). The subcellular distribution of this acid diacylglycerol lipase was studied in brain tissue of rats and mice; in the latter case neurological mutants and their normal controls were used. Several other acidic hydrolases were employed as normal controls were used. Several other acidic hydrolases were employed as lysosomal markers. In mouse brain, the specific activity which is about 50-100 times lower than in rat brain, was greatest in the lysosomal fraction. In contrast, no enrichment of DG-lipase was observed in any subcellular fraction of the active enzyme of rat brain. Activities were about equally distributed in the microsomal, myelin-synaptosomal and lysosomal fractions.  相似文献   

20.
For a long time lysosomes were considered terminal organelles involved in the degradation of different substrates. However, this view is rapidly changing by evidence demonstrating that these organelles and their content display specialized functions in addition to the degradation of substances. Many lysosomal proteins have been implicated in specialized cellular functions and disorders such as antigen processing, targeting of surfactant proteins, and most lysosomal storage disorders. To date, about fifty lysosomal hydrolases have been identified, and the majority of them are targeted to the lysosomes via the mannose-6-phosphate receptor (M6P-Rc). However, recent studies on the intracellular trafficking of the non-enzymic lysosomal proteins prosaposin and GM2 activator (GM2AP) demonstrated that they use an alternative receptor termed "sortilin". Existing evidence suggests that some hydrolases traffic to the lysosomes in a mannose 6-phophate-indepentend manner. The possibility that sortilin is implicated in the targeting of some soluble hydrolases, as well as the consequences of this process, is addressed in the present review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号