首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
2.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

3.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

4.
The effect of various inhibitors on the substrate-dependent quenching of the fluorescence of 9-aminoacridine was measured in inside-out membrane vesicles of Escherichia coli. The rate of fluorescence quenching in the presence of inhibitors was dependent on the rate of electron transfer through the respiratory chain with NADH, succinate, D-lactate or DL-glycerol 3-phosphate as substrates. Several patterns of response were given by the inhibitors. Inhibitors competitive with substrate, or those acting only on the dehydrogenases, gave a direct relationship between the extent of inhibition of oxidase activity and the rate of quenching. A biphasic relationship was given by 2-heptyl-4-hydroxyquinoline N-oxide and piericidin A which was due to these compounds acting both as inhibitors of the respiratory chain and, at higher concentrations, as uncoupling agents. Uncouplers inhibited fluorescence quenching with minimal inhibition of oxidase activity. The transmembrane pH difference was calculated from the extent of fluorescence quenching and the intravesicular volume. The maximum pH difference of 3.3--3.7 units was generated by each of the substrates tested.  相似文献   

5.
The inhibition of membrane ATPase from the marine alkalotolerant bacterium Vibrio alginolyticus by DCCD, triphenyltin and venturicidin was studied. DCCD proved to be an irreversible inhibitor, while venturicidin and triphenyltin produced a reversible inhibitory effect. The DCCD-binding proteolipid was identified in the membrane preparations. The effect of the inhibitors on ATPase activity and ATP-dependent Na+-transport in V. alginolyticus subcellular vesicles is discussed.  相似文献   

6.
The inhibition of membrane ATPase from the marine alkalotolerant bacterium Vibrio alginolyticus by DCCD, triphenyltin and venturicidin was studied. DCCD proved to be an irreversible inhibitor, while venturicidin and triphenyltin produced a reversible inhibitory effect. The DCCD-binding proteolipid was identified in the membrane preparations. The effect of the inhibitors on ATPase activity and ATP-dependent Na+-transport in V. alginolyticus subcellular vesicles is discussed.  相似文献   

7.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Characterization of a vacuolar proton ATPase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
Of the total ATPase activity in homogenates of the ameba, Dictyostelium discoideum, approximately one-third was inhibited at pH 7 by 25 microM 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Upon isopycnic sucrose density gradient centrifugation, the bulk of the NBD-CI-sensitive ATPase activity was recovered in a major membrane fraction with a broad peak at 1.16 g/ml, well-resolved from markers for plasma membranes, mitochondria, lysosomes and contractile vacuoles. The gradient peak had a specific activity of 0.5 mumol/min per mg protein. The activity was half-inhibited by 1 microM silicotungstate, 2 microM diisothiocyanatostilbene disulfonate (DIDS), 2.5 microM dicyclohexylcarbodiimide (DCCD), 4 microM NBD-CI and 20 microM N-ethylmaleimide (NEM) but was resistant to conventional inhibitors of mitochondrial and plasma membrane ATPase. That this ATPase activity constituted a proton pump was shown by the MgATP-dependent uptake and quenching of Acridine orange fluorescence by partially purified vacuoles. The Acridine orange uptake was specifically blocked by the aforementioned inhibitors. The generation of proton electrochemical gradients was suggested by the stimulation of enzyme activity by protonophores (fatty acids) and cation exchangers (nigericin). Uncoupling stimulated the ATPase activity as much as 20-fold, revealing an unusually high impermeability of the membranes to protons. ATPase activity was also stimulated by halide ions, apparently through a parallel conductance pathway. Under a variety of sensitive test conditions, the reverse enzyme reaction (i.e., incorporation of 32Pi into ATP) was not detected. We conclude that this major H+-ATPase serves to acidify the abundant prelysosomal vacuoles found in D. discoideum (Padh et al. (1989) J. Cell Biol. 108, 865-874). The finding of a vacuolar H+-ATPase in a protist suggests the ubiquity of this enzyme among the eukaryotic kingdoms.  相似文献   

9.
M J Pringle  M Taber 《Biochemistry》1985,24(25):7366-7371
N-Cyclohexyl-N'-[4-(dimethylamino)-alpha-naphthyl]carbodiimide (NCD-4) and N-cyclohexyl-N'-(1-pyrenyl)carbodiimide (NCP) are two novel fluorescent analogues of the mitochondrial inhibitor dicyclohexylcarbodiimide (DCCD). Although nonfluorescent in aqueous media, both compounds form fluorescent conjugates with mitochondrial electron transport particles (ETPH) or purified H+-ATPase (F1-F0) vesicles. DCCD prevents the reaction of ETPH with both NCD-4 and NCP. The fluorescent probes are effective inhibitors of ATPase activity and ATP-driven membrane potential, although their reaction rates are considerably slower than that of DCCD. The fluorescence of NCD-4- or NCP-treated H+-ATPase is quenched by hydrophobic spin-label nitroxide derivatives of stearic acid (chi-NS) in the order 16-NS greater than 12-NS greater than 7-NS approximately equal to 5-NS, whereas membrane-impermeant iodide ions have negligible effect. The quenching behavior of 16-NS (the most effective quencher) suggests that a small fraction of labels remain inaccessible to the quencher. It is concluded that the DCCD-binding sites are oriented toward the membrane lipids and are located in the lipid bilayer ca. 18 A from the membrane surface.  相似文献   

10.
I Ogilvie  R A Capaldi 《FEBS letters》1999,453(1-2):179-182
Defects of respiratory chain protein complexes and the ATP synthase are becoming increasingly implicated in human disease. Recently, mutations in the ATPase 6 gene have been shown to cause several different neurological disorders. The product of this gene is homologous to the a subunit of the ATP synthase of Escherichia coli. Here, mutations equivalent to those described in humans have been introduced into the a subunit of E. coli by site-directed mutagenesis, and the effects of these mutations on the ATPase activity, ATP synthesis and ability of the enzyme to pump protons studied in detail. The effects of the mutations varied considerably. The mutation L262P (9185 T-C equivalent) caused a 70% loss of ATP synthesis activity, reduced DCCD sensitivity, and lowered proton pumping activity. The L207P (8993 T-C equivalent) reduced ATP synthesis by 50%, affected DCCD sensitivity, while proton pumping was only marginally affected when measured by the standard AMCA quenching assay. The other mutations studied affected the functioning of the ATP synthase much less. The results confirm that modeling of these point mutations in the E. coli enzyme is a useful approach to determining how alterations in the ATPase 6 gene affect enzyme function and, therefore, how a pathogenic effect can be exerted.  相似文献   

11.
Tonoplast-enriched vesicles were prepared from suspension-cultured Populus euphratica Oliv. cells by differential centrifugation and discontinuous sucrose density gradient centrifugation. The properties of the proton pumping activity of H+-ATPases in tonoplast vesicles were studied by acridine orange fluorescent quenching measured at 22 ℃. The proton pumping activity of ATPase was ATP-dependent with apparent Michaelis-Menten Constant (Km) for ATP about 0.65 mmol/L. The optimal pH for H+-ATPases activity was 7.5. The proton pumping activity of H+-ATPase could be initiated by some divalent cations, Mg2+ being highly efficient, much more than Fe2+; and Ca2+, Cu2+ and Zn2+ were inefficient under the experimental condition. The proton translocation could be stimulated by halide anions, with potencies decreasing in the order Cl-> Br->I->F-. The proton pumping activity was greatly inhibited by N-ethylmaleimide (NEM), N,N′-dicyclohexylcarbodiimide (DCCD), NO-3 and Bafilomycin A1, but not by orthovanadate and azide. These results demonstrated that the H+-ATPase in the tonoplast of Populus euphratica belonged to vacuolar type ATPase. This work was the first time that tonoplast-enriched vesicles were isolated from Populus euphratica cells.  相似文献   

12.
Proton efflux from mesophyll cells of Asparagus sprengeri Regel was inhibited completely by diethylstilbestrol (DES) and NN'-dicyclohexylcarbodiimide (DCCD), known inhibitors of the plasma membrane ATPase. At the concentrations of inhibitors employed, fusicoccin did not reactivate proton efflux. Subsequent addition of ferricyanide however resulted in significant rates of acidification of the medium and reduction of ferricyanide. Similar results were obtained in the light and in the dark. Thus, medium acidification in response to redox activity appears to be independent of the ATP-dependent acidification process.  相似文献   

13.
F Blasco  X Gidrol 《Biochimie》1982,64(7):531-536
Proton translocation activity of Candida tropicalis plasma membrane ATPase has been demonstrated using a fluorescent delta pH probe (ACMA) and by direct pH measurements. Modifications in fluorescence intensity and H+ transport are highly specific for Mg2+ and ATP, and are sensitive to the well-known inhibitors of the plasma membrane ATPase, vanadate and DCCD. A H+/ATP ratio of 0.54 is found.  相似文献   

14.
Lung surfactant is synthesized in lung epithelial type II cells and stored in the lamellar bodies prior to its secretion onto the alveolar surface. The lamellar bodies, like other secretory organelles, maintain an ATP-dependent pH gradient that is sensitive to inhibitors of H(+)-ATPase. This report shows that the ATPase activity of lamellar bodies is enriched in a fraction prepared from lamellar bodies that were disrupted after isolation. The apparent Vmax for this enzyme was 150 nmol ATP hydrolyzed per min per mg protein and apparent Km for ATP was approximately 50 microM. The enzyme activity was sensitive to N-ethylmaleimide (NEM), dicyclohexylcarbodiimide (DCCD) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) (all inhibitors of vacuolar-type H(+)-ATPase) and vanadate (inhibitor of phosphoenzyme-type ATPase). Besides, the activity could also be inhibited with diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and Ca2+. Two proteins (of approximately 45 kDa and 17 kDa) of this fraction showed acid-stable phosphorylation with ATP. The labeling of proteins with ATP (-gamma-32P) could be chased with unlabelled ATP, suggesting that phosphorylation and dephosphorylation of these proteins is associated with the ATPase activity. Our results on inhibition characteristics of the enzyme activity suggest that besides a vacuolar type H(+)-ATPase, the lamellar bodies also contain a phosphoenzyme type ATPase that is sensitive to inhibitors of vacuolar type H(+)-ATPase.  相似文献   

15.
Oxidative phosphorylation, ATP-32Pi exchange, ATP-dependent quenching of acridine-dye fluorescence, ATP-dependent transhydrogenase and ATP-dependent transport of thiomethyl beta-D-galactoside are shown to be experimentally equivalent tools to study the functional state of the ATPase complex in Escherichia coli wild-type and mutant strains defective in oxidative phosphorylation. According to these criteria ten mutants in the ATPase complex were classified having lesions in the unc A,B region of the chromosome. The first mutant type lacks ATPase activity, but the membrane-integrated part of the complex remains functional (class I). The second mutant type lacks a functional membrane-integrated part, but retains ATPase activity (class II). The third mutant type is shown to be defective in both parts of the ATPase complex (class III).  相似文献   

16.
Higher plant cells have one or more vacuoles important for maintaining cell turgor and for the transport and storage of ions and metabolites. One driving force for solute transport across the vacuolar membrane (tonoplast) is provided by an ATP-dependent electrogenic H+ pump. The tonoplast H+-pumping ATPase from oat roots has been solubilized with Triton X-100 and purified 16-fold by Sepharose 4B chromatography. The partially purified enzyme was sensitive to the same inhibitors (N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid, and NO-3) as the native membrane-bound enzyme. The partially purified enzyme was stimulated by Cl- (Km(app) = 1.0 mM) and hydrolyzed ATP with a Km(app) of 0.25 mM. Thus, the partially purified tonoplast ATPase has retained the properties of the native membrane-bound enzyme. [14C]DCCD labeled a single polypeptide (14-18 kDa) in the purified tonoplast ATPase preparation. Two major polypeptides, 72 and 60 kDa, that copurified with the ATPase activity and the 14-18-kDa DCCD-binding peptide are postulated to be subunits of a holoenzyme of 300-600 kDa (estimated by gel filtration). Despite several catalytic similarities with the mitochondrial H+-ATPase, the major polypeptides of the tonoplast ATPase differed in mass from the alpha and beta subunits (58 and 55 kDa) and the [14C] DCCD-binding proteolipid (8 kDa) of the oat F1F0-ATPase.  相似文献   

17.
大豆下胚轴质膜H+-ATPase质子转运的测定   总被引:4,自引:0,他引:4  
以大豆下胚轴为材料,采用改进的匀浆介质,通过两相法制得具有质子转运活力的高纯度质膜微囊.并且发现冻融处理可以促进质膜微囊的翻转而提高荧光猝灭效率.质子载体和质子转运特性分析表明,由Mg2+-ATP引发的荧光猝灭可以被质子载体CCCP恢复,并被质子通道抑制剂DCCD抑制;并且发现质膜H-ATPase专一抑制剂钒酸钠可以完全抑制荧光猝灭,同时发现荧光猝灭依赖于Mg2+,并受K刺激,最适pH为6.5.以上证明所测荧光猝灭是由质膜H-ATPase所进行的质子转运引起的.结果同时表明,维持H-ATPase合适构象和提高质膜微囊封闭性是制备具有H转运活力质膜微囊的两个关键因素.  相似文献   

18.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1983,723(2):150-159
Interaction of N,N′-dicyclohexylcarbodiimide (DCCD) with ATPase of Mycobacterium phlei membranes results in inactivation of ATPase activity. The rate of inactivation of ATPase was pseudo-first order for the initial 30–65% inactivation over a concentration range of 5–50 μM DCCD. The second-order rate constant of the DCCD-ATPase interaction was k = 8.5·105 M?1·min?1. The correlation between the initial binding of [14C]DCCD and 100% inactivation of ATPase activity shows 1.57 nmol DCCD bound per mg membrane protein. The proteolipid subunit of the F0F1-ATPase complex in membranes of M. phlei with which DCCD covalently reacts to inhibit ATPase was isolated by labeling with [14C]DCCD. The proteolipid was purified from the membrane in free and DCCD-modified form by extraction with chloroform/methanol and subsequent chromatography on Sephadex LH-20. The polypeptide was homogeneous on SDS-acrylamide gel electrophoresis and has an apparent molecular weight of 8000. The purified proteolipid contains phosphatidylinositol (67%), phosphatidylethanolamine (18%) and cardiolipin (8%). Amino acid analysis indicates that glycine, alanine and leucine were present in elevated amounts, resulting in a polarity of 27%. Cysteine and tryptophan were lacking. Butanol-extracted proteolipid mediated the translocation of protons across the bilayer, in K+-loaded reconstituted liposomes, in response to a membrane potential difference induced by valinomycin. The proton translocation was inhibited by DCCD, as measured by the quenching of fluorescence of 9-aminoacridine. Studies show that vanadate inhibits the proton gradient driven by ATP hydrolysis in membrane vesicles of M. phlei by interacting with the proteolipid subunit sector of the F0F1-ATPase complex.  相似文献   

19.
Rhodamine 123 (RH-123) was used to monitor the membrane potential of mitochondria isolated from rat liver. Mitochondrial energization induces quenching of RH-123 fluorescence and the rate of fluorescence decay is proportional to the mitochondrial membrane potential. Exploiting the kinetics of RH-123 fluorescence quenching in the presence of succinate and ADP, when protons are both pumped out of the matrix driven by the respiratory chain complexes and allowed to diffuse back into the matrix through ATP synthase during ATP synthesis, we could obtain an overall quenching rate proportional to the steady-state membrane potential under state 3 condition. We measured the kinetics of fluorescence quenching by adding succinate and ADP in the absence and presence of oligomycin, which abolishes the ADP-driven potential decrease due to the back-flow of protons through the ATP synthase channel, F(0). As expected, the initial rate of quenching was significantly increased in the presence of oligomycin, and conversely preincubation with subsaturating concentrations of the uncoupler carbonyl cyanide p-trifluoro-metoxyphenilhydrazone (FCCP) induced a decreased rate of quenching. N,N'-dicyclohexylcarbodiimide (DCCD) behaved similarly to oligomycin in increasing the rate of quenching. These findings indicate that RH-123 fluorescence quenching kinetics give reliable and sensitive evaluation of mitochondrial membrane potential, complementing steady-state fluorescence measurements, and provide a mean to study proton flow from the mitochondrial intermembrane space to the matrix through the F(0) channel.  相似文献   

20.
DCCD inhibits formation of a succinate-driven transmembrane pH gradient in submitochondrial particles, as shown by inhibition of fluorescence quenching of 9-aminoacridine, without concomitant inhibition of succinate oxidation. On the other hand ubiquinol-cytochrome c reductase activity is inhibited by DCCD. Half-inhibition of both fluorescence quenching and ubiquinol-cytochrome c reductase occur at 35 μM DCCD. The results suggest that DCCD inhibits proton pumping activity coupled to electron flow through the bc1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号