首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp), is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.  相似文献   

2.
The distribution, spread, neuropathology, tropism, and persistence of the neurovirulent GDVII strain of Theiler's virus in the central nervous system (CNS) was investigated in mice susceptible and resistant to chronic demyelinating infection with TO strains. Following intracerebral inoculation, the virus spread rapidly to specific areas of the CNS. There were, however, specific structures in which infection was consistently undetectable. Virus spread both between adjacent cell bodies and along neuronal pathways. The distribution of the infection was dependent on the site of inoculation. The majority of viral RNA-positive cells were neurons. Many astrocytes were also positive. Infection of both of these cell types was lytic. In contrast, viral RNA-positive oligodendrocytes were rare and were observed only in well-established areas of infection. The majority of oligodendrocytes in these areas were viral RNA negative and were often the major cell type remaining; however, occasional destruction of these cells was observed. No differences in any of the above parameters were observed between CBA and BALB/c mice, susceptible and resistant, respectively, to chronic CNS demyelinating infection with TO strains of Theiler's virus. By using Southern blot hybridization to detect reverse-transcribed PCR-amplified viral RNA sequences, no virus persistence could be detected in the CNS of immunized mice surviving infection with GDVII. In conclusion, the GDVII strain of Theiler's murine encephalomyelitis virus cannot persist in the CNS, but this is not consequent upon an inability to infect glial cells, including oligodendrocytes.  相似文献   

3.
Theiler's virus causes a persistent infection and a demyelinating disease of mice which is a model for multiple sclerosis. Susceptibility to viral persistence maps to several loci, including the interferon gamma locus. Inactivating the gene coding for the interferon gamma receptor makes 129/Sv mice susceptible to persistent infection and clinical disease, whereas inactivating the interferon gamma gene makes C57BL/6 mice susceptible to persistent infection but not to clinical disease. This difference in phenotype is due to the difference in genetic background. Clinical disease depends on high viral load and Tmevd5, a locus on chromosome 11. These results have consequences for the identification of viruses which might be implicated in multiple sclerosis.  相似文献   

4.
A Azoulay  M Brahic    J F Bureau 《Journal of virology》1994,68(6):4049-4052
The DA strain of Theiler's virus causes a persistent infection of the white matter of the spinal cord with chronic inflammation and primary demyelination. Inbred strains of mice differ greatly in their susceptibility to this disease. It has been shown that both viral persistence and demyelination are controlled mainly by a gene located in the H-2D region. This raised the possibility that the H-2D gene itself controls viral persistence, which in turn determines demyelination. In the present work we introduced the H-2Db gene of resistant C57BL/6 mice into the genome of susceptible H-2q FVB mice and showed that the FVB mice become resistant to persistence of the infection and did not develop inflammatory lesions.  相似文献   

5.
C P Rossi  E Cash  C Aubert    A Coutinho 《Journal of virology》1991,65(7):3895-3899
Theiler's virus, a murine picornavirus, persists in the central nervous system of susceptible strains of mice, causing chronic inflammation and demyelination in the white matter of the spinal cord. Resistant strains, however, clear the virus and do not develop late disease. In this study, we compared the characteristics of T and B lymphocytes in C57BL/6 (resistant) and SJL/J (susceptible) mice 1 week after intracerebral infection. We detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 detected a marked increase of the number of immunoglobulin M (IgM)-secreting cells in the spleens of C57BL/6 mice (but not in those of SJL/J mice), which correlated with higher levels of serum IgM antiviral antibodies. The role of the humoral response in virus clearance and resistance was demonstrated by a marked decrease in the number of infected spinal cord cells in SJL/J mice after passive transfer of serum from infected C57BL/6 donors. The B-cell response was found to be partly T cell independent. These results suggest an important role of the early humoral immune response in resistance to Theiler's virus-induced disease.  相似文献   

6.
Theiler's murine encephalomyelitis virus is responsible for a chronic inflammatory demyelinating disease of the central nervous system of the mouse. The disease is associated with persistent viral infection of the spinal cord. Some strains of mice are susceptible to viral infection, and other strains are resistant. The effect of the genetic background of the host on viral persistence has not been thoroughly investigated. We studied the amount of viral RNA in the spinal cords of 17 inbred strains of mice and their F1 crosses with the SJL/J strain and observed a large degree of variability among strains. The pattern of viral persistence among mouse strains could be explained by the interaction of two loci. One locus is localized in the H-2D region of the major histocompatibility complex, whereas the other locus is outside this complex and is not linked to the Tcrb locus on chromosome 6.  相似文献   

7.
The ability of a neurotropic virus, mouse hepatitis virus type 3 (MHV3), to invade the central nervous system (CNS) and to recognize cells selectively within the brain was investigated in vivo and in vitro. In vivo, MHV3 induced in C3H mice a genetically controlled infection of meningeal cells, ependymal cells, and neurons. In vitro, purified MHV3 bound to the surface of isolated ependymal cells and cultured cortical neurons but not to oligodendrocytes or cultured astrocytes. MHV3 replicated within cultured cortical neurons and neuroblastoma cells (NIE 115); infected cultured neurons nonetheless survived and matured normally for a 7-day period postinfection. On the other hand, MHV3 had a low affinity for cortical glial cells or glioma cells (C6 line), both of which appear to be morphologically unaltered by viral infection. Finally, MHV3 infected and disrupted cultured meningeal cells. This suggests that differences in the affinity of cells for MHV3 are determinants of the selective vulnerability of cellular subpopulations within the CNS. In vivo, a higher titer of virus was needed for CNS penetration in the genetically resistant (A/Jx) mice than in the susceptible (C57/BL6) mouse strain. However, in spite of viral invasion, no neuropathological lesions developed. In vitro viral binding to adult ependymal cells of susceptible and resistant strains of mice was identical. Genetic resistance to MHV3-CNS infection appeared to be mediated both by a peripheral mechanism limiting viral penetration into the CNS and by intra-CNS mechanisms, presumably at a stage after viral attachment to target cells.  相似文献   

8.
We show that inactivating the beta(2)m gene increases the viral load of SJL/J mice persistently infected by Theiler's virus. Together with previous results, this shows that the characteristics of Tmevp1, a locus which controls the amount of viral RNA that persists in the central nervous system, are those of an H-2 class I gene.  相似文献   

9.
The Tmevp3 locus controls the load of Theiler's virus RNA during persistent infection of the mouse central nervous system (CNS). We identified a candidate gene at this locus, Tmevpg1, by using a positional cloning approach. Tmevpg1 and its human ortholog, TMEVPG1, are expressed in the immune system and encode what appears to be a noncoding RNA. They are located in a cluster of cytokine genes that includes the genes for gamma interferon and one or two homolog of interleukin-10. We now report that Tmevpg1 is expressed in CNS-infiltrating immune cells of resistant B10.S mice, but not in those of susceptible SJL/J mice, following inoculation with Theiler's virus. The pattern of expression of Tmevpg1 is the same in B10.S mice and in SJL/J mice congenic for the resistant B10.S haplotype of Tmevp3. Nineteen polymorphisms were identified when the Tmevpg1 genes of B10.S and SJL/J mice were compared. Interestingly, Tmevpg1 is down regulated after in vitro stimulation of murine CD4(+) or CD8(+) splenocytes, whereas Ifng is up regulated. Similar patterns of expression of TMEVPG1 and IFNG were observed in human NK cells and CD4(+) and CD8(+) T lymphocytes. Therefore, Tmevpg1 is a strong candidate gene for the Tmevp3 locus and may be involved in the control of Ifng gene expression.  相似文献   

10.
Administration of neutralizing monoclonal antibody to gamma interferon increased Theiler's virus-induced demyelination and virus antigen persistence in the spinal cord in susceptible SJL/J mice and completely abrogated resistance such that all C57BL/10SNJ mice developed demyelination. These experiments support the hypothesis that gamma interferon is critically important for resistance to Theiler's virus-induced disease but is not required for myelin destruction.  相似文献   

11.
Classic studies on C57BL-derived mouse strains showed that they were resistant to mouse mammary tumor virus (MMTV) infection. Although one form of resistance mapped to the major histocompatibility complex (MHC) locus, at least one other, unknown gene was implicated in this resistance. We show here that B10.BR mice, which are derived from C57BL mice but have the same MHC locus (H-2k) as susceptible C3H/HeN mice, are resistant to MMTV, and show a lack of virus spread in their lymphoid compartments but not their mammary epithelial cells. Although in vivo virus superantigen (Sag)-mediated activation of T cells was similar in C3H/HeN and B10.BR mice, T cell-dependent B-cell and dendritic cell activation was diminished in the latter. Ex vivo, B10.BR T cells showed a diminished capacity to proliferate in response to the MMTV Sag. The genetic segregation of the resistance phenotype indicated that it maps to a single allele. These data highlight the role of Sag-dependent T-cell responses in MMTV infection and point to a novel mechanism for the resistance of mice to retroviral infection that could lead to a better understanding of the interplay between hosts and pathogens.  相似文献   

12.
Theiler's murine encephalomyelitis virus induced central nervous system demyelination in susceptible strains of mice with s, q, v, p, and f H-2D alleles. We used immunoelectron microscopy to look for differential production of class II immune response gene products (Ia) within astrocytes, oligodendrocytes, microglia, and endothelial cells. Spinal cord sections from susceptible mice (B10.S and B10.ASR2) showed increased content of Ia in glial and endothelial cells. In contrast, resistant mice [B10.S(9R)] showed minimal Ia production within the CNS. The findings indicate an important role of class II immune response products on glial cells during demyelination after virus infection.  相似文献   

13.
Four genetic loci were tested for linkage with loci that control genetic resistance to lethal ectromelia virus infection in mice. Three of the loci were selected because of concordance with genotypes assigned to recombinant inbred (RI) strains of mice derived from resistant C57BL/6 and susceptible DBA/2 (BXD) mice on the basis of their responses to challenge infection. Thirty-six of 167 male (C57BL/6 x DBA/2)F1 x DBA/2 backcross (BC) mice died (22%), of which 27 (75%) were homozygous for DBA/2 alleles at Hc and H-2D. Twenty-eight percent of sham-castrated and 6% of sham-ovariectomized BC mice were susceptible to lethal mousepox, whereas 50% of gonadectomized mice were susceptible. There was no linkage evident between Hc or H-2D and loci that controlled resistance to lethal ectromelia virus infection in 44 castrated BC mice. Mortality among female mice of BXD RI strains with susceptible or intermediate male phenotypes was strongly correlated (r = 0.834) with male mortality. Gonadectomized C57BL/6 mice were as resistant as intact mice to lethal ectromelia virus infection. These results indicate that two gonad-dependent genes on chromosomes 2 and 17 and one gonad-independent gene control resistance to mousepox virus infection, that males and females share gonad-dependent genes, and that the gonad-independent gene is fully protective.  相似文献   

14.
Intracranial infection of Theiler's murine encephalomyelitis virus (TMEV) induces demyelination and a neurological disease in susceptible SJL/J (SJL) mice that resembles multiple sclerosis. While the virus is cleared from the central nervous system (CNS) of resistant C57BL/6 (B6) mice, it persists in SJL mice. To investigate the role of viral persistence and its accompanying immune responses in the development of demyelinating disease, transgenic mice expressing the P1 region of the TMEV genome (P1-Tg) were employed. Interestingly, P1-Tg mice with the B6 background showed severe reductions in both CD4(+) and CD8(+) T-cell responses to capsid epitopes, while P1-Tg mice with the SJL background displayed transient reductions following viral infection. Reduced antiviral immune responses in P1-Tg mice led to >100- to 1,000-fold increases in viral persistence at 120 days postinfection in the CNS of mice with both backgrounds. Despite the increased CNS TMEV levels in these P1-Tg mice, B6 P1-Tg mice developed neither neuropathological symptoms nor demyelinating lesions, and SJL P1-Tg mice developed significantly less severe TMEV-induced demyelinating disease. These results strongly suggest that viral persistence alone is not sufficient to induce disease and that the level of T-cell immunity to viral capsid epitopes is critical for the development of demyelinating disease in SJL mice.  相似文献   

15.
Theiler's virus causes a persistent infection with demyelination that is studied as a model for multiple sclerosis. Inbred strains of mice differ in their susceptibility to viral persistence due to both H-2 and non-H-2 genes. A locus with a major effect on persistence has been mapped on chromosome 10, close to the Ifng locus, using a cross between susceptible SJL/J and resistant B10.S mice. We now confirm the existence of this locus using two lines of congenic mice bearing the B10.S Ifng locus on an SJL/J background, and we describe a deletion in the promoter of the Ifng gene of the SJL/J mouse. We studied the expression of IFN-gamma, IL-2, IL-10, and IL-12 in the brains of SJL/J mice, B10.S mice, and the two lines of congenic mice during the first 2 wk following inoculation. We found a greater expression of IFN-gamma and IL-2 mRNA in the brains of B10.S mice compared with those of SJL/J mice. Also, the ratio of IL-12 to IL-10 mRNA levels was higher in B10.S mice. However, the cytokine profiles were the same for the two lines of resistant congenic mice and for susceptible SJL/J mice. Therefore, the difference of Th1/Th2 balance between the B10.S and SJL/J mice is not due to the Ifng locus and does not account for the difference of susceptibility of these mice to persistent infection.  相似文献   

16.
In genetically susceptible strains of mice, the DA strain of Theiler's virus, a picornavirus, causes a persistent infection of the white matter of the spinal cord associated with chronic demyelination. In resistant strains, on the other hand, the infection is cleared within 1 to 2 weeks. In this article, we show that Theiler's virus induces a rapid and abundant cytotoxic T lymphocyte (CTL) response in resistant C57BL/6 mice, while the response remains low throughout infection in susceptible SJL/J mice. This difference can be referred to a higher number of virus-specific CTL precursors in C57BL/6 mice. These observations indicate that the efficient induction of virus-specific CTL precursors is critical for avoiding the establishment of a persistent picornaviral infection.  相似文献   

17.
After intracerebral inoculation, Theiler's virus induces in its natural host, the mouse, an acute encephalomyelitis followed, in susceptible animals, by chronic inflammation and primary demyelination. Susceptibility to demyelination among strains of laboratory mice is explained by the capacity of the immune system to control viral load during persistence. Also, differences of susceptibility to viral load between the susceptible SJL strain and the resistant B10.S strain are mainly due to two loci, Tmevp2 and Tmevp3, located close to the Ifng locus on chromosome 10. In this article, we show that the Tmevp3 locus controls both mortality during the acute encephalomyelitis and viral load during persistence. Most probably, two genes located in the Tmevp3 interval control these two different phenotypes with efficiencies that depend on the age of the mouse at inoculation. Il22, a member of the IL-10 cytokine family, is a candidate gene for the control of mortality during the acute encephalomyelitis.  相似文献   

18.
We investigated the role of the immune system in protecting against virus-induced demyelination by generating lines of transgenic B10 (H-2(b)) congenic mice expressing three independent contiguous coding regions of the Theiler's murine encephalomyelitis virus (TMEV) under the control of a class I major histocompatibility complex (MHC) promoter. TMEV infection of normally resistant B10 mice results in virus clearance and development of inflammatory demyelination in the spinal cord. Transgenic expression of the viral capsid genes resulted in inactivation of virus-specific CD8(+) T lymphocytes (class I MHC immune function) directed against the relevant peptides, but it did not affect production of virus capsid-specific antibodies or lymphocyte proliferation to the virus antigen (class II MHC immune functions). Following intracerebral infection with TMEV, all three lines of mice survived the acute encephalitis but transgenic mice expressing VP1 (or the cluster of virus capsid proteins [VP4, VP2, and VP3] mapping to the left of VP1 in the TMEV genome) developed virus persistence and subsequent demyelination in spinal cord white matter. Transgenic mice expressing noncapsid proteins mapping to the right of VP1 (2A, 2B, 2C, 3A, 3B, 3C, and 3D) cleared the virus and did not develop demyelination. These results are consistent with the hypothesis that virus capsid gene products of TMEV stimulate class I-restricted CD8(+) T-cell immune responses, which are important for virus clearance and for protection against myelin destruction. Presented within the context of self-antigens, inactivation of these cells by ubiquitous expression of relevant virus capsid peptides partially inhibited resistance to virus-induced demyelination.  相似文献   

19.
The low-neurovirulence Theiler's murine encephalomyelitis viruses (TMEV), such as BeAn virus, cause a persistent infection of the central nervous system (CNS) in susceptible mouse strains that results in inflammatory demyelination. The ability of TMEV to persist in the mouse CNS has traditionally been demonstrated by recovering infectious virus from the spinal cord. Results of infectivity assays led to the notion that TMEV persists at low levels. In the present study, we analyzed the copy number of TMEV genomes, plus- to minus-strand ratios, and full-length species in the spinal cords of infected mice and infected tissue culture cells by using Northern hybridization. Considering the low levels of infectious virus in the spinal cord, a surprisingly large number of viral genomes (mean of 3.0 x 10(9)) was detected in persistently infected mice. In the transition from the acute (approximately postinfection [p.i.] day 7) to the persistent (beginning on p.i. day 28) phase of infection, viral RNA copy numbers steadily increased, indicating that TMEV persistence involves active viral RNA replication. Further, BeAn viral genomes were full-length in size; i.e., no subgenomic species were detected and the ratio of BeAn virus plus- to minus-strand RNA indicated that viral RNA replication is unperturbed in the mouse spinal cord. Analysis of cultured macrophages and oligodendrocytes suggests that either of these cell types can potentially synthesize high numbers of viral RNA copies if infected in the spinal cord and therefore account for the heavy viral load. A scheme is presented for the direct isolation of both cell types directly from infected spinal cords for further viral analyses.  相似文献   

20.
Alleles at the Flv locus determine disease outcome after a flavivirus infection in mice. Although comparable numbers of congenic resistant and susceptible mouse embryo fibroblasts (MEFs) are infected by the flavivirus West Nile virus (WNV), resistant MEFs produce approximately 100- to 150-fold lower titers than susceptible ones and flavivirus titers in the brains of resistant and susceptible animals can differ by >10,000-fold. The Flv locus was previously identified as the 2'-5' oligoadenylate synthetase 1b (Oas1b) gene. Oas gene expression is up-regulated by interferon (IFN), and after activation by double-stranded RNA, some mouse synthetases produce 2-5A, which activates latent RNase L to degrade viral and cellular RNAs. To determine whether the lower levels of intracellular flavivirus genomic RNA from resistant mice detected in cells at all times after infection were mediated by RNase L, RNase L activity levels in congenic resistant and susceptible cells were compared. Similar moderate levels of RNase L activation by transfected 2-5A were observed in both types of uninfected cells. After WNV infection, the mRNAs of IFN-beta and three Oas genes were up-regulated to similar levels in both types of cells. However, significant levels of RNase L activity were not detected until 72 h after WNV infection and the patterns of viral RNA cleavage products generated were similar in both types of cells. When RNase L activity was down-regulated in resistant cells via stable expression of a dominant negative RNase L mutant, approximately 5- to 10-times-higher yields of WNV were produced. Similarly, about approximately 5- to 10-times-higher virus yields were produced by susceptible C57BL/6 RNase L-/- cells compared to RNase L+/+ cells that were either left untreated or pretreated with IFN and/or poly(I) . poly(C). The data indicate that WNV genomic RNA is susceptible to RNase L cleavage and that RNase L plays a role in the cellular antiviral response to flaviviruses. The results suggest that RNase L activation is not a major component of the Oas1b-mediated flavivirus resistance phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号