首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sudden increase in adenylate cyclase activity occurs during the chemotaxis and aggregation of Dictyostelium discoideum. Preincubation of extracts from the pre-aggregation stage, in which adenylate cyclase activity was low, with post-aggregation stages, in which the increase in activity occurred, resulted in the demonstration of a heat-stable inhibitor of adenylate cyclase (ACI) that was present only during the early stages of development. Cellular fractionation studies showed that ACI was present in both the 100 000 g pellet and supernatant fractions. The inhibitor was not inactivated by proteases or protease inhibitors. A heat-treated preparation of the inhibitor was dialysable. The effect of ACI was dependent upon a pre-incubation treatment, with notable inhibition occurring only after a 20 min pre-incubation period. The apparent inhibition was not artifactual, due to the degradation of the substrate, ATP, or to the loss of the reaction product, cAMP. Additionally, the inhibitor was specific for adenylate cyclase, as it had no effect on the activity of several other enzymes, including cAMP phosphodiesterase.  相似文献   

2.
Examination of components of the cAMP system in primary cultures of differentiating chick myoblasts revealed a basal intracellular cAMP level of 50–100 pmole/mg of DNA, which increased ten to fifteen-fold for approximately 1 hr between 37.5 and 39.5 hr of culture, only 5–6 hr before the initiation of myoblast fusion. Activities of the enzymes adenylate cyclase and protein kinase were examined during the initial stages of myoblast differentiation. Both the basal activity and the degree of NaF stimulation of adenylate cyclase increased during the time examined, the appearance of these changes coinciding in time of culture with the observed peak of cAMP. The protein kinase present was sensitive to cAMP, and its basal and cAMP stimulated activities increased throughout the prefusion period of culture. The results suggest a causal relationship between the increase in adenylate cyclase activities, the increase in intracellular cAMP, and the onset of fusion; and the possibility that intracellular cAMP levels control the expression of myoblast differentiation is discussed.  相似文献   

3.
The ability of Dictyostelium discoideum amoebae to synthesize and secrete cAMP in response to exogenous cAMP is called cAMP signaling. Concanavalin A is a potent, rapid, noncompetitive inhibitor of this response, with the rate of inhibition consistent with its rate of binding. The concanavalin A does not deplete cellular ATP, alter cAMP binding to its surface receptors, or affect basal adenylate cyclase activity, but blocks the cAMP-stimulated activation of adenylate cyclase. Therefore, concanavalin A appears to inhibit a step between the receptor and the adenylate cyclase which is necessary for the transduction of the cAMP signal. Wheat germ agglutinin, a polyclonal antibody against an 80-kDa glycoprotein, four monoclonal antibodies against the amoebal surface, and a chemical cross-linking agent which reacts with cell surface primary amines also inhibit signaling. To determine the importance of cross-linking in the inhibition, succinylated concanavalin A and the unlinked, reactive portion of the chemical cross-linker were tested and found to be relatively ineffective inhibitors. Thus it appears that ligands capable of cross-linking molecules on the external surface of D. discoideum amoebae inhibit cAMP signaling. It is proposed that these cross-linking agents prevent membrane or cytoskeletal rearrangement and that this rearrangement must occur before the adenylate cyclase is activated.  相似文献   

4.
Summary Stimulation of human arterial endothelial cells with heparin-binding growth factor-1 (HBGF-1) resulted in a 40% to 60% increase in the cellular adenylate cyclase activity and intracellular cAMP content. The stimulatory effect of HBGF-1 was effectively suppressed by pretreating the cells with transforming growth factor-β (TGF-β), an endothelial cell growth inhibitor. The inhibition of the adenylate cyclase activity precedes growth inhibition by at least 24 h. The half maximal inhibitory dose was calculated to be 0.2 ng/ml for the inhibition of both cyclase activity and cell growth. The possible role of the adenylate cyclase suppression in growth inhibition by TGF-β is discussed. This work was supported in part by grants from NCI (CA 37589), RJR Nabisco, Inc. and Kyowa Hakko Kogyo, Co., Ltd. Editor's Statement The observation that heparin-binding growth factor activates adenylate cyclase in endothelial cells and TGF beta lowers cAMP levels in endothelial cells treated with heparin-binding growth factor raises the possibility that growth control may be mediated, at least partially, through cyclic nucleotides in this system, as well as raising questions about relationships between activities of these peptide growth factors and G protein activation.  相似文献   

5.
Bordetella pertussis and the other Bordetella species produce a novel adenylate cyclase toxin which enters target cells to catalyze the production of supraphysiologic levels of intracellular cyclic adenosine monophosphate (cAMP). In these studies, dialyzed extracts from B. pertussis containing the adenylate cyclase toxin, a partially purified preparation of adenylate cyclase toxin, and extracts from transposon Tn5 mutants of B. pertussis lacking the adenylate cyclase toxin, were used to assess the effects of adenylate cyclase toxin on human peripheral blood monocyte activities. Luminol-enhanced chemiluminescence of monocytes stimulated with opsonized zymosan was inhibited greater than 96% by exposure to adenylate cyclase toxin-containing extract, but not by extracts from adenylate cyclase toxin-deficient mutants. The chemiluminescence responses to particulate (opsonized zymosan, Leishmania donovani, and Staphylococcus aureus) and soluble (phorbol myristate acetate) stimuli were inhibited equivalently. The superoxide anion generation elicited by opsonized zymosan was inhibited 92% whereas that produced by phorbol myristate acetate was inhibited only 32% by B. pertussis extract. Inhibition of oxidative activity was associated with a greater than 500-fold increase in monocyte cAMP levels, but treated monocytes remained viable as assessed by their ability to exclude trypan blue and continued to ingest particulate stimuli. The major role of the adenylate cyclase toxin in the inhibition of monocyte oxidative responses was demonstrated by: 1) little or no inhibition by extracts from B. pertussis mutants lacking adenylate cyclase toxin; 2) high level inhibition with extract from B. parapertussis, a related species lacking pertussis toxin; and 3) a reciprocal relationship between monocyte cAMP levels and inhibition of opsonized zymosan-induced chemiluminescence using both crude extract and partially purified adenylate cyclase toxin. Pertussis toxin, which has been shown to inhibit phagocyte responses to some stimuli by a cAMP-independent mechanism, had only a small (less than 20%) inhibitory effect when added at concentrations up to 100-fold in excess of those present in B. pertussis extract. These data provide strong support for the hypothesis that B. pertussis adenylate cyclase toxin can increase cAMP levels in monocytes without compromising target cell viability or impairing ingestion of particles and that the resultant accumulated cAMP is responsible for the inhibition of oxidative responses to a variety of stimuli.  相似文献   

6.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

7.
Changes in intracellular and extracellular cAMP levels are reported for the cellular slime mold Dictyostelium discoideum during its development on filter supports. Examined were axenically and bacterially grown strain A3 and bacterially grown NC-4. In each case a major peak in cAMP occurred during aggregation. In addition, axenically grown A3 showed minor rises in cAMP at 16 hr and during culmination; in contrast, NC-4 showed no increase at 16 hr but gave a very large increase at culmination. Both cell-associated phosphodiesterase and the extracellular phosphodiesterase present in the top filter were measured throughout development. Both showed activity peaks during aggregation with much lower plateau values thereafter. At aggregation about 80% of the activity per filter was contributed by the cell-associated phosphodiesterase. The rate of cAMP turnover during aggregation was estimated by following the hydrolysis of applied [3H]cAMP. A minimum rate of about 7% turnover/sec was obtained. From this turnover rate a minimum value for the stimulated activity of the adenylate cyclase was estimated as 224 pmoles/min-mg. Although this level is already over threefold greater than the highest value obtained in vitro, other experiments indicate that the in vivo adenylate cyclase activity may exceed 700 pmoles/min-mg.  相似文献   

8.
The effect of the haem precursor 5-aminolevulinic acid (ALA) on the production of cyclic adenosine-monophosphate (cAMP) by rat cerebellar membranes was investigated. It was found that ALA dose-dependently decreased cAMP levels (maximal inhibition of 38%, at 1 mM), due to an inhibition of basal adenylate cyclase activity. ALA also inhibited fluoride- and Gpp(NH)p-stimulated, but not the forskolin-stimulated adenylate cyclase activity. 5-Aminovaleric acid (an inhibitor of GABA(B) receptors) did not prevent the inhibition, indicating that it was not mediated by the activation of the G(i)-protein coupled GABA(B) receptor. In addition, the nucleotide binding site of G-protein appeared not to be affected by ALA since it did not inhibit [3H]Gpp(NH)p binding to our membrane preparation. Antioxidants (glutathione, ascorbate and trolox) completely prevented the inhibition indicating that ALA effect was mediated by an oxidative damage of adenylate cyclase. ALA also inhibited the activity of adenylate cyclase in membranes isolated from rat cortex and striatum and from human cortex. These results may be of value in understanding the neurochemical mechanisms underlying the neurotoxic effects of ALA.  相似文献   

9.
Progesterone treatment induces the meiotic maturation of Xenopus laevis oocytes. Previous evidence indicates that this hormonal effect may be due to inhibition of oocyte adenylate cyclase. The present work studies several aspects of the mechanism of adenylate cyclase inhibition by this hormone. Forskolin greatly stimulates oocyte adenylate cyclase in the absence of guanine nucleotides and this activity is not sensitive to progesterone inhibition. In addition the forskolin-activated enzyme is not inhibited by a wide range of guanine nucleotide, in the presence or absence of hormone. The time course of cAMP synthesis catalyzed by oocyte adenylate cyclase in the presence of guanyl-5′l-imidodiphosphate (Gpp(NH)p) shows an initial lag period that does not depend on the concentration of Gpp(NH)p. Progesterone causes a very significant increase in the hysteresis of the reaction, at least doubling the half-time of enzyme activation. The hormonal effect on the lag cannot be reversed by saturating concentrations of Gpp(NH)p. Progesterone also decreases the steady-state rates of the reaction. This effect, however, depends on the concentration of Gpp(NH)p. High concentrations of Gpp(NH)p almost completely reverse the inhibition of the steady-state rates. Progesterone does not inhibit if it is added to the reaction after the initial lag period. Guanosine-5′-O-(2-thiodiphosphate) (GDP-β-S) is an efficient competitive inhibitor of Gpp(NH)p activation of adenylate cyclase. Progesterone inhibition is observed at all concentrations of GDP-β-S and is potentiated at high ratios of GDP-β-S to Gpp(NH)p. These data indicate that progesterone inhibits by interfering with the activation of the Ns subunit of the enzyme by guanine nucleotides, rather than through a mechanism involving a separate Ni subunit.  相似文献   

10.
Fibrinogen binds to human platelets after specific receptor sites are exposed by thrombin, ADP, epinephrine, and other stimuli. Since prostaglandin I2 (PGI2), a potent activator of platelet adenylate cyclase, prevents mobilization of the fibrinogen receptor by aggregating agents, we investigated the relationship between platelet cAMP levels and fibrinogen receptor status in thrombin-stimulated human platelets. A dose-dependent rise in platelet cAMP in response to two adenylate cyclase agonists, PGI2 and forskolin, correlated with progressive inhibition of fibrinogen binding. Moreover, the receptor inhibition produced by either agonist was sustained up to 2 h and was associated with a persistent increase in cAMP levels. The phosphodiesterase inhibitor, 1-methyl-3-isobutylxanthine, in the presence of a subthreshold concentration of PGI2 also raised cAMP and inhibited fibrinogen binding. In contrast, the effects of PGI2 on both cAMP and fibrinogen binding were markedly attenuated by 9-(tetrahydro-2-furyl) adenine, an adenylate cyclase inhibitor. These results indicate that the inhibition of fibrinogen binding by PgI2 is linked to its effect on cAMP levels and suggest that elevation of platelet cAMP levels from any cause prevents exposure of the fibrinogen receptor.  相似文献   

11.
To ascertain the presence of adenosine receptors in the trout testis, cells isolated from testes at different spermatogenetic stages were cultured in the presence or absence of adenosine, adenosine receptor agonists, or antagonists and of cAMP analogs, for up to 20 min, or 20 hr, or 4.5 days. Cyclic AMP production was then assayed or 3H-thymidine incorporation was measured. Cellular content of cAMP was enhanced by adenosine, by the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), and by 2-p(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680), an adenosine A2A receptor-selective agonist. The increase in cAMP induced by the adenylate cyclase activator L-858051 was inhibited by the adenosine A1)receptor-selective agonists R-N6-(2-phenylisopropyl)adenosine (R-PIA) and N6-cyclopentyladenosine (CPA). These effects were antagonized by the two adenosine A2)receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 8-(3-chlorostyryl)caffeine (CSC), and by the adenosine A1)receptor-selective antagonist 8-cyclopentyl-1,3dipropylxanthine (CPX), respectively. Increase in the cAMP content induced by adenosine was inhibited by the cell permeable adenylate cyclase inhibitor 2',5'-dideoxyadenosine. These data suggest that A(1) and A(2) adenosine receptors which respectively inhibit and stimulate adenylate cyclase activity are present on trout testicular cells (unidentified), while the presence of A3 adenosine receptor subtype was not apparent. 3H-thymidine incorporation decreased in the presence of the adenylate cyclase activator L-858051 and of the cAMP analogs 8-CPT cAMP and Sp-5,6-DCI-cBiMPS, regardless of the presence or absence of the phosphodiesterase inhibitor RO 20-1724. This suggests that an increase in testicular cAMP may act as a negative growth regulator for the mitotic germ cells. In agreement with these data, the activation of A2 stimulatory receptors inhibited short-term (20 hr) DNA synthesis. However, the activation of A1 inhibitory receptors had the same effect. This suggests that events, cAMP-dependent or independent, induced by the activation of testicular adenosine receptors, may participate in the regulation of trout male germ cell proliferation.  相似文献   

12.
We have recently shown that atrial natriuretic factor (ANF) inhibits adenylate cyclase activity in rat platelets where only one population of ANF receptors (ANF-R2) is present, indicating that ANF-R2 receptors may be coupled to the adenylate cyclase/cAMP system. In the present studies, we have used ring-deleted peptides which have been reported to interact with ANF-R2 receptors also called clearance receptors (C-ANF) without affecting the guanylate cyclase/cGMP system, to examine if these peptides can also inhibit the adenylate cyclase/cAMP system. Ring-deleted analog C-ANF4-23 like ANF99-126 inhibited the adenylate cyclase activity in a concentration-dependent manner in rat aorta, brain striatum, anterior pituitary, and adrenal cortical membranes. The maximal inhibition was about 50-60% with an apparent Ki between 0.1 and 1 nM. In addition, C-ANF4-23 also decreased the cAMP levels in vascular smooth muscle cells in a concentration-dependent manner without affecting the cGMP levels. The maximal decrease observed was about 60% with an apparent Ki of about 1 nM. Furthermore, C-ANF4-23 was also able to inhibit cAMP levels and progesterone secretion stimulated by luteinizing hormone in MA-10 cell line. Other smaller fragments of ANF with ring deletions were also able to inhibit the adenylate cyclase activity as well as cAMP levels. Furthermore, the stimulatory effects of various agonists such as 5'-(N-ethyl)carboxamidoadenosine, dopamine, and forskolin on adenylate cyclase activity and cAMP levels were also significantly inhibited by C-ANF4-23. The inhibitory effect of C-ANF4-23 on adenylate cyclase was dependent on the presence of GTP and was attenuated by pertussis toxin treatment. These results indicate that ANF-R2 receptors or so-called C-ANF receptors are coupled to the adenylate cyclase/cAMP signal transduction system through inhibitory guanine nucleotide regulatory protein.  相似文献   

13.
The presence of G-proteins, interacting with cAMP surface receptors, was investigated in vegetative cells, aggregation-competent cells, and migrating slugs of Dictyostelium discoideum. Our results indicate that G-proteins are present in all stages. In vegetative cells there is a limited number of cAMP receptors but no effect of GTP tau S on cAMP binding could be detected; in addition, no effect of cAMP on GTP tau S binding or GTPase activity was observed. In both aggregation-competent cells and slugs GTP tau S inhibits cAMP binding, while cAMP stimulates GTP tau S binding and high-affinity GTPase. Since the presence of G-proteins coupled to cAMP receptors could be demonstrated in slugs, the involvement of the effector enzymes adenylate cyclase and phospholipase C was investigated. The results show that adenylate cyclase activity is stimulated by GTP tau S in both stages and that in cells from migrating slugs the Ins(1,4,5)P3 production is increased upon stimulation with cAMP. The possible involvement of G-proteins in signal transduction during the slug stage of D. discoideum is discussed.  相似文献   

14.
The effect of molybdate on adenylate cyclase (EC 4.6.1.1) in rat liver plasma membranes has been examined. The apparent K alpha for molybdate activation of the enzyme is 4.5 mM, and maximal, 7-fold stimulation is achieved at 50 mM. The observed increase in cAMP formation in the adenylate cyclase assay is not due to: (a) an inhibition of ATP hydrolysis; (b) a molybdate-catalyzed conversion of ATP to cAMP; (c) an inhibition of cAMP hydrolysis; or (d) an artifact in the isolation of cAMP formed in the reaction. Molybdate activation of adenylate cyclase is a general phenomenon exhibited by the enzyme in brain, cardiac, and renal tissue homogenates and in erythrocyte ghosts. However, like fluoride and guanyl-5'-yl imidodiphosphate (Gpp(NH)p), molybdate does not activate the soluble rat testicular adenylate cyclase. Molybdate is a reversible activator of adenylate cyclase. Activation is not due to an increase in ionic strength and is independent of the salt used to introduce molybdate. Molybdate does not activate adenylate cyclase previously stimulated with Gpp(NH)p or fluoride. At concentration greater than 20 mM, molybdate inhibits fluoride-stimulated adenylate cyclase, and at concentrations greater than 100 mM, molybdate stimulation of basal adenylate cyclase activity is diminished.  相似文献   

15.
In this study we continued decoding the adenylate cyclase signaling mechanism that underlies the effect of insulin and related peptides. We show for the first time that insulin signal transduction via an adenylate cyclase signaling mechanism, which is attended by adenylate cyclase activation, is blocked in the muscle tissues of the rat and the mollusk Anodonta cygnea in the presence of: 1) pertussis toxin, which impairs the action of the inhibitory GTP-binding protein (Gi); 2) wortmannin, a specific blocker of phosphatidylinositol 3-kinase; and 3) calphostin C, an inhibitor of different isoforms of protein kinase C. The treatment of sarcolemmal membrane fraction with cholera toxin increases basal adenylate cyclase activity and decreases the sensitivity of the enzyme to insulin. We suggest that the stimulating effect of insulin on adenylate cyclase involves the following stages of hormonal signal transduction cascade: receptor tyrosine kinase → Giprotein (βγ) → phosphatidylinositol 3-kinase → protein kinase C (ζ?) → Gsprotein → adenylate cyclase → cAMP.  相似文献   

16.
The nonspecific lipid transfer protein from beef liver was used to modify the phospholipid composition of intact turkey erythrocytes in order to study the dependence of isoproterenol-stimulated adenylate cyclase activity on membrane phospholipid composition. Incorporation of phosphatidylinositol into turkey erythrocytes inhibited isoproterenol-stimulated cyclic AMP accumulation in a linear, concentration-dependent manner. Inhibition was relatively specific for phosphatidylinositol; phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid were from 3 to 7 times less effective as inhibitors of hormone-stimulated cyclase activity. Inhibition by phosphatidylinositol was not reversible when up to 90% of the incorporated phosphatidylinositol was removed, either by incubation with phosphatidylinositol-specific phospholipase C or a second incubation with transfer protein; possibly adenylate cyclase activity depends on a small pool of phosphatidylinositol that is inaccessible to either phospholipase C hydrolysis or removal by lipid transfer protein. Phosphatidylinositol incorporation inhibits adenylate cyclase activity by uncoupling beta-adrenergic receptors from the remainder of the cyclase complex. Phosphatidylinositol incorporation had no effect on stimulation of cAMP accumulation by either cholera toxin or forskolin, indicating that inhibition occurs only at the level of receptor. Phosphodiesterase activity was not altered in phosphatidylinositol-modified cells. Inhibition of cAMP accumulation was not the result of changes in either membrane fluidity or in cAMP transport out of modified turkey erythrocytes. Phosphatidylinositol inhibition of isoproterenol-stimulated cyclase activity may serve as a useful model system for hormone-induced desensitization.  相似文献   

17.
18.
The potentiation of corticotropin-releasing factor (CRF)-stimulated cAMP production by vasopressin (VP) in the pituitary cell was investigated by studies on the interaction of CRF, VP, and the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA) on cAMP, adenylate cyclase and phosphodiesterase. Addition of VP or PMA (0.01-100 nM) alone did not alter cellular cAMP content, but markedly increased the effect of 10 nM CRF with ED50 of about 1 nM. Treatment of the cells with 200 ng/ml pertussis toxin for 4 h increased CRF-stimulated cAMP accumulation by 3.2-fold, an effect that was not additive to those of VP and PMA. Incubation of pituitary cells with 2 mM 1-methyl-3-isobutylxanthine increased CRF-stimulated cAMP accumulation and decreased the relative effect of VP and PMA, suggesting that the actions of VP and PMA are partially due to inhibition of phosphodiesterase. This was confirmed by the demonstration of a 30% inhibition of the low-affinity phosphodiesterase activity in cytosol and membranes prepared from cells preincubated with VP or PMA. In intact cells, following [3H]adenine prelabeling of endogenous ATP pools, measurement of adenylate cyclase in the presence of 1-methyl-3-isobutylxanthine showed no effect of VP and PMA alone, but did show a 2-fold potentiation of the effect of CRF. Measurement of adenylate cyclase in pituitary homogenates by conversion of [alpha-32P]ATP to [32P]cAMP showed a paradoxical GTP-dependent inhibition by VP of basal and CRF-stimulated adenylate cyclase activity, suggesting that the VP receptor is coupled to an inhibitory guanyl nucleotide-binding protein. Pertussis toxin pretreatment of the cells prevented the VP inhibition of adenylate cyclase activity observed in pituitary cell homogenates. These findings indicate that besides inhibition of phosphodiesterase, VP has a dual interaction with the pituitary adenylate cyclase system; a direct inhibitory effect, manifested only in broken cells, that is mediated by a receptor-coupled guanyl nucleotide-binding protein, and a physiologically predominant indirect stimulatory effect in the intact cell, mediated by protein kinase C phosphorylation of one of the components of the CRF-activated adenylate cyclase system.  相似文献   

19.
1. Intact mouse neuroblastoma NS20 cells, in the presence of cyclic adenosine 3':5'-monophosphate (cAMP) phosphodiesterase inhibitor, responded to adenosine (200 muM) and 2-chloroadenosine (200 muM) with a 20-fold increase in intracellular cAMP levels. AMP (200 muM) additions caused only a 3.5-fold cAMP level elevation. ATP, ADP, guanosine, cytidine, uridine, and guanine, all at 200 muM, had no effect on the cAMP level of these cells. 2. Homogenate NS20 adenylate cyclase activity was increased 2.5- to 4-fold by addition of 200 muM adenosine, 2-chloroadenosine, 2-hydroxyadenosine, or 8-methylaminoadenosine. Prostaglandin E1 additions (1.4 muM) produced about an 8-fold stimulation of homogenate cyclase activity. The Km of homogenate cyclase activation by adenosine and 2-chloroadenosine was 67.6 and 6.7 muM, respectively. Addition of 7-deazaadenosine, tolazoline, yohimbine, guanosine, cytosine, guanine, 2-deoxy-AMP, and adenine 9-beta-D-xylopyranoside, all at 200 muM were found to be without effect on homogenate NS20 adenylate cyclase. Two classes of inhibitors of homogenate NS20 adenylate cyclase activity were observed. One class, which included AMP, adenine, and theophylline, blocked 2-chloroadenosine but not prostaglandin E1 stimulation of cyclase. Theophylline was shown to be a competitive inhibitor of 2-chloroadenosine, with a Ki of 35 muM. The second class of inhibitors, which included 2'- and 5'-deoxyadenosine, inhibited unstimulated, 2-chloroadenosine and prostaglandin E1-stimulated homogenate cyclase activity to about the same degree. 3. Activation of NS20 homogenate adenylate cyclase by adenosine appears to be noncooperative. 4. The inhibitory action of putative "purinergic" neurotransmitters is postulated to be due to their effects on adenylate cyclase activity.  相似文献   

20.
Protein kinase, phosphodiesterase and adenylate cyclase of plasma membrane of adipocytes and the effect of the feedback regulator (FR) on these three enzymes was measured and compared. The basal level ratio of adenylate cyclase to phosphodiesterase to protein kinase was 1:1.9:3.0. Epinephrine and/or FR alters this ratio. FR stimulated protein kinase activity up to 3 fold in the presence of a wide range of enzyme concentrations, 5-50 mug membrane protein/tube. The concentration of FR effective for stimulation of membrane protein kinase was much greater than that needed for inhibition of adenylate cyclase and phosphodiesterases. The inhibition by FR on adenylate cyclase was the most potent effect among the 3 enzymes. 1 U (or 2 U/ml) of FR inhibited 50% of the adenylate cyclase activity in a defined system. The maximum effective concentration of FR for stimulation of membrane protein kinase was greater than 10 U/ml. Histone type 11A was the best substrate for protein phosphorylation so far observed. The FR stimulatory effect was observed at all substrate concentrations used ranging from 1-5 mg/ml. A NaF concentration curve shows that 15 mM NaF gave maximum phosphorylation. The stimulatory effect of FR was observed both in the presence and absence of NaF. Protein kinase of adipocyte plasma membrane was mainly cAMP-independent. The effect of FR (20 U/ml) in stimulation of protein phosphorylation was much greater than that of cAMP (1 X 10(-6) M). The cAMP and FR effects seemed to be additive. Preincubation of plasma membrane with FR in the absence of ATP resulted in no decrease but slight increase in protein kinase activity. A shift in protein kinase, phosphodiesterase and adenylate cyclase ratios by FR suggests the regulatory role of FR in cAMP metabolism in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号