首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A specific [3H] GABA and [14C] flunitrazepam binding sites have been identified in a membrane fraction of human myometrium. The specific binding of [14C] GABA was displaced by unlabelled GABA and bicuculline. It was shown that the binding of [3H] flunitrazepam to membrane preparations is enhanced in the presence of GABA. A similar reciprocal effect of benzodiazepines to enhance [14C] GABA binding has been demonstrated. The present results indicate that GABAA-BD receptors complexes may have a functional significance in human ovary.  相似文献   

3.
Whereas most membrane receptors are oligomeric entities, G-protein-coupled receptors have long been thought to function as monomers. Within the last 15 years, accumulating data have indicated that G-protein-coupled receptors can form dimers or even higher ordered oligomers, but the general functional significance of this phenomena is not yet clear. Among the large G-protein-coupled receptor family, class C receptors represent a well-recognized example of constitutive dimers, both subunits being linked, in most cases, by a disulfide bridge. In this review article, we show that class C G-protein-coupled receptors are multidomain proteins and highlight the importance of their dimerization for activation. We illustrate several consequences of this in terms of specific functional properties and drug development.  相似文献   

4.
X-ray crystallography was used to solve the atomic structure of the ligand binding domain of the metabotropic glutamate receptor type1 homo-dimer, making it possible to show the conformational change of this domain upon glutamate binding. Studies of dimeric metabotropic receptors thereafter have focused on the respective roles and interaction of the two subunits, on the activation mechanisms following the structural rearrangements of the ligand-binding domain, and on the functional significance of polyvalent cations, the binding of which was identified in the crystal. The direct interaction between the GABA(B) receptor and the metabotropic glutamate receptor (mGluR1) has also attracted attention. Recently, attention has focused on incorporating these structural features into a functional view of the receptors.  相似文献   

5.
In oligomeric proteins, the native conformation and its functional properties depend on the interactions which exist between the different chains. The role of these subunit interactions can be studied using either the unfolded state or the native state as a starting point. During the folding process, the properties which appear following a bimolecular reaction are related to the formation of an association area. Similarly, the properties which are lost upon partial dissociation of the native state are related to the association area which is disrupted. Four examples are presented in this article: phosphofructokinase and aspartokinase-homoserine dehydrogenase from E. coli are studied through their folding process, and fatty acid synthetase from B. ammoniagenes and reptilian ovomacroglobulin are studied through their dissociated forms. In all cases, the function of the protein is a sensitive index of the formation of the subunit interactions, and can be more conveniently measured than other size/shape parameters. The extrapolation from the folding of small proteins to the assembly of large and complex structures can be reasonably achieved by admitting that subunit interactions are coupled to the subtle adjustments required by the protein to exert its biological function.  相似文献   

6.
7.
The present study indicates involvement of serotoninergic (5-HTergic) mechanisms in immunosuppression by DSLET (100 mkg/kg), a selective agonist of the delta2-opioid receptors, in CBA mice. 8-OH-DPAT (0.1 mg/kg), a selective agonist of the 5-HT(1A)-autoreceptors, WAY-100635 (1, 3 mg/kg) and ketanserin (1, 3 mg/kg), a selective antagonists of the postsynaptic 5-HT(1A)- and 5-HT(2A)-receptors, respectively, prevented immunosuppressive effect of DSLET. A possible differential role for 5-HT-receptors in delta-opioid immunosuppression is suggested.  相似文献   

8.
Adriamycin was used in situ, in isolated liver mitochondria of hyperthyroid rats to study the role of cardiolipin in the functioning of FAD-linked L-glycerol-3-phosphate dehydrogenase. The apparent kinetic parameters of the reaction catalyzed by the enzyme were affected by adriamycin. The effect of adriamycin was dependent on the electron acceptor, suggesting the existence of distinct binding sites for hydrophobic and hydrophilic acceptors. Assuming a correlation between the two plateaus observed upon binding of adriamycin to the mitochondria and the penetration of the drug into the two leaflets of the inner membrane [Cheneval et al. (1985) J. Biol. Chem. 260, 13003-13007], we can deduce that cardiolipin in both leaflets influences predominantly the electron acceptor binding site(s).  相似文献   

9.
125I-labelled fibrinogen was clotted by thrombin in the presence of activated Factor XIII and the rates of formation of γ dimers and α polymers were measured. These changes in fibrin subunits were correlated with the solubility of fibrin in 1% monochloroacetic acid. In the presence of the factor XIIIa inhibitor, glycine methyl ester, fibrin solubility was found to depend on the level of α polymers formed. A preferential inhibition of α polymer formation rather than γ dimer was observed in the presence of glycine methyl ester.  相似文献   

10.
The effects of bivalent (Mg2+, Ca2+, Sr2+) and monovalent (K+, Na+, NH4+) cations on the ATPase activity of subfragment 1 of myosin (SI) with a decreased Mg2+ content (EDTA-SI) were studied. Mg2+ activate the EDTA-SI ATPase, but only in the absence of other activating cations. K+, NH4+, a2+ and Sr2+ have a much stronger activating effect on EDTA-SI ATPase than on Mg-SI (SI enriched with Mg2+) ATPase. Monovalent cations inhibit Mg2+-ATPase and Ca2+-ATPase of EDTA-SI, while K+ and NH4+ activate Sr2+-ATPase of EDTA-SI. Based on experimental results and literary data, a hypothesis on the participation of the cations in the functioning of myosin ATPase was postulated. This hypothesis entails the existence of two closely interconnected cation-binding sites in the vicinity of the myosin active center (one for bivalent and one for monovalent cations); the ATPase activity of myosin is at any moment dependent on the nature of cations present in these two sites. An attempt to explain the role of the cations in the accomplishment of the ATPase reaction by myosin was made.  相似文献   

11.
A novel alpha subunit in rat brain GABAA receptors   总被引:16,自引:0,他引:16  
Two cDNAs (alpha 1 and alpha 4) from rat brain cDNA libraries encode isoforms of the alpha subunit of the GABA/benzodiazepine receptor, which differ at 30% of their amino acid residues. Northern blot analysis and in situ hybridization histochemistry show that alpha 1 and alpha 4 mRNAs have distinct sizes and distinct regional and cellular distributions in rat brain: both mRNAs are found in the cortex and hippocampus; however, only the alpha 1 mRNA is detected in the cerebellum. We injected RNA transcribed from alpha 1 and alpha 4 cDNAs into Xenopus oocytes, together with an RNA for a rat beta subunit. We obtained GABA-dependent inward currents that were reversibly blocked by picrotoxin. Picrotoxin alone, applied to oocytes producing the alpha and beta polypeptides, elicited an outward current. We suggest that these polypeptides together produce GABA-gated ion channels that can also open spontaneously.  相似文献   

12.
In the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH), the genome sequencing revealed the presence of three operons encoding formate dehydrogenases. fdh1 encodes an alphabetagamma trimeric enzyme containing 11 heme binding sites; fdh2 corresponds to an alphabetagamma trimeric enzyme with a tetrahemic subunit; fdh3 encodes an alphabeta dimeric enzyme. In the present work, spectroscopic measurements demonstrated that the reduction of cytochrome c(553) was obtained in the presence of the trimeric FDH2 and not with the dimeric FDH3, suggesting that the tetrahemic subunit (FDH2C) is essential for the interaction with this physiological electron transfer partner. To further study the role of the tetrahemic subunit, the fdh2C gene was cloned and expressed in Desulfovibrio desulfuricans G201. The recombinant FDH2C was purified and characterized by optical and NMR spectroscopies. The heme redox potentials measured by electrochemistry were found to be identical in the whole enzyme and in the recombinant subunit, indicating a correct folding of the recombinant protein. The mapping of the interacting site by 2D heteronuclear NMR demonstrated a similar interaction of cytochrome c(553) with the native enzyme and the recombinant subunit. The presence of hemes c in the gamma subunit of formate dehydrogenases is specific of these anaerobic sulfate-reducing bacteria and replaces heme b subunit generally found in the enzymes involved in anaerobic metabolisms.  相似文献   

13.
To investigate the cell cycle checkpoint response to aberrant S phase-initiation, we analyzed mutations of the two DNA primase subunit genes of Schizosaccharomyces pombe, spp1(+) and spp2(+) (S. pombe primase 1 and 2). spp1(+) encodes the catalytic subunit that synthesizes the RNA primer, which is then utilized by Polalpha to synthesize the initiation DNA. Here, we reported the isolation of the fission yeast spp1(+) gene and cDNA and the characterization of Spp1 protein and its cellular localization during the cell cycle. Spp1 is essential for cell viability, and thermosensitive mutants of spp1(+) exhibit an allele-specific abnormal mitotic phenotype. Mutations of spp1(+) reduce the steady-state cellular levels of Spp1 protein and compromised the formation of Polalpha-primase complex. The spp1 mutant displaying an aberrant mitotic phenotype also fails to properly activate the Chk1 checkpoint kinase, but not the Cds1 checkpoint kinase. Mutational analysis of Polalpha has previously shown that activation of the replication checkpoint requires the initiation of DNA synthesis by Polalpha. Together, these have led us to propose that suboptimal cellular levels of polalpha-primase complex due to the allele-specific mutations of Spp1 might not allow Polalpha to synthesize initiation DNA efficiently, resulting in failure to activate a checkpoint response. Thus, a functional Spp1 is required for the Chk1-mediated, but not the Cds1-mediated, checkpoint response after an aberrant initiation of DNA synthesis.  相似文献   

14.
NMDA receptors are involved in a variety of brainstem functions. The excitatory postsynaptic NMDA currents of pre-Botzinger complex interneurons and hypoglossal motoneurons, which are located in the medulla oblongata, show remarkably fast deactivation kinetics of approximately 30 ms compared with NMDA receptors in other types of neurons. Because structural heterogeneity might be the basis for physiological properties, we examined the expression of six NMDA receptor subunits (NMDAR1, NR2A-2D, and NR3A) plus eight NMDR1 splice variants in pre-Botzinger complex, hypoglossal and, for comparison, neurons from the nucleus of the solitary tract in young rats using single cell multiplex RT-PCR. Expression of NR2A, NR2B, and NR2D was observed in all three cell types while NR3A was much more abundant in pre-Botzinger complex interneurons, which belong to the rhythm generator of respiratory activity. In hypoglossal neurons, the NMDAR1 splice variants NMDAR1-4a and NMDAR1-4b were found. In neurons of the nucleus of the solitary tract, instead of NMDAR1-4b, the NMDAR1-2a splice variant was detected. This differential expression of modulatory splice variants might be the molecular basis for the characteristic functional properties of NMDA receptors, as neurons expressing a special NMDAR1 splice variant at the mRNA level show fast kinetics compared with neurons lacking this splice variant.  相似文献   

15.
The interactions of taurine and its precursor hypotaurine with the GABA-benzodiazepine receptor complex were studied by investigating their effects on GABA and flunitrazepam binding in rat brain membranes. Taurine, and to a lesser degree also hypotaurine, displaced the high- and low-affinity GABA binding. The maximal binding capacities of both sites were decreased in the presence of taurine, while the binding constants remained the same, suggesting noncompetitive interactions. Taurine and hypotaurine affected flunitrazepam binding only at a very high concentration (50 mmol/l), whereas GABA (within the concentration range of 0.1–100 mol/l) significantly enhanced the binding. Taurine inhibited the GABA-stimulated binding dose-dependently. These modulatory effects of taurine on the GABA-benzodiazepine receptor complex could result from interactions with the GABA recognition site but not from direct actions on the benzodiazepine site.  相似文献   

16.
17.
Cyanobacterial NAD(P)(+)-reducing reversible hydrogenases comprise five subunits. Four of them (HoxF, HoxU, HoxY, and HoxH) are also found in the well-described related enzyme from Ralstonia eutropha. The fifth one (HoxE) is not encoded in the R. eutropha genome, but shares homology with the N-terminal part of R. eutropha HoxF. However, in cyanobacteria, HoxE contains a 2Fe-2S cluster-binding motif that is not found in the related R. eutropha sequence. In order to obtain some insights into the role of HoxE in cyanobacteria, we deleted this subunit in Synechocystis PCC6803. Three types of interaction of the cyanobacterial hydrogenase with pyridine nucleotides were tested: (a) reductive activation of the NiFe site, for which NADPH was found to be more efficient than NADH; (b) H(2) production, for which NADH appeared to be a more efficient electron donor than NADPH; and (c) H(2) oxidation, for which NAD(+) was a much better electron acceptor than NADP(+). Upon hoxE deletion, the Synechocystis hydrogenase active site remained functional with artificial electron donors or acceptors, but the enzyme became unable to catalyze H(2) production or uptake with NADH/NAD(+). However, activation of the electron transfer-independent H/D exchange reaction by NADPH was still observed in the absence of HoxE, whereas activation of this reaction by NADH was lost. These data suggest different mechanisms for diaphorase-mediated electron donation and catalytic site activation in cyanobacterial hydrogenase.  相似文献   

18.
19.
Recent results related to investigation of the role of intestinal microbiota (IM) in development and functioning of the human nervous system are discussed. The role of the microbiota in bidirectional communication between the gastrointestinal tract and the central nervous system is considered. Special attention is paid to the primary IM of infants, which is actively involved in formation of immune and other physiological mechanisms, including the nervous system, and is responsible for the subsequent general and psychical health of a human. The results of research on ability of the commensal intestinal microflora to produce neuroactive compounds, including neurotransmitters, short- and long-chain fatty acids, γ-aminobutyric acid, etc., are summarized. These compounds may have a considerable effect on development and functioning of the central nervous system, including the brain. Research on various animal models is discussed, including investigation of IM effect on behavior, learning abilities and memory, anxiety and depression levels, reaction to emotional stimuli, and stress resistance. A special section deals with probiotic bacteria, which are presently considered as psychobiotics with preventive and therapeutic potential for treatment of neurological and neurophysiological disorders. Development of new paradigms and concepts, rejection of some classical concepts of neurobiology is presently the key condition for the future breakthrough in investigation of human nervous activity.  相似文献   

20.
Transient receptor potential vanilloid type channels (TRPVs) are expressed in several cell types in human and animal lungs. Increasing evidence has demonstrated important roles of these cation channels, particularly TRPV1 and TRPV4, in the regulation of airway function. These TRPVs can be activated by a number of endogenous substances (hydrogen ion, certain lipoxygenase products, etc.) and changes in physiological conditions (e.g., temperature, osmolarity, etc.). Activation of these channels can evoke Ca(2+) influx and excitation of the neuron. TRPV1 channels are generally expressed in non-myelinated afferents innervating the airways and lungs, which also contain sensory neuropeptides such as tachykinins. Upon stimulation, these sensory nerves elicit centrally-mediated reflex responses as well as local release of tachykinins, and result in cough, airway irritation, reflex bronchoconstriction and neurogenic inflammation in the airways. Recent studies clearly demonstrated that the excitability of TRPV1 channels is up-regulated by certain autacoids (e.g., prostaglandin E(2), bradykinin) released during airway inflammatory reaction. Under these conditions, the TRPV1 can be activated by a slight increase in airway temperature or tissue acidity. Indirect evidence also suggests that TRPV channels may play a part in the pathogenesis of certain respiratory diseases such as asthma and chronic cough. Therefore, the potential use of TRPV antagonists as a novel therapy for these diseases certainly merits further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号