首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The impact of modest but prolonged (3 h) exposure to high physiological glucose concentrations and hyperkalemia on the insulin secretory and phospholipase C (PLC) responses of rat pancreatic islets was determined. In acute studies, glucose (5-20 mM) caused a dose-dependent increase in secretion with maximal release rates 25-fold above basal secretion. When measured after 3 h of exposure to 5-10 mM glucose, subsequent stimulation of islets with 10-20 mM glucose during a dynamic perifusion resulted in dose-dependent decrements in secretion and PLC activation. Acute hyperkalemia (15-30 mM) stimulated calcium-dependent increases in both insulin secretion and PLC activation; however, prolonged hyperkalemia resulted in a biochemical and secretory lesion similar to that induced by sustained modest hyperglycemia. Glucose- (8 mM) desensitized islets retained significant sensitivity to stimulation by either carbachol or glucagon-like peptide-1. These findings emphasize the vulnerability of the beta-cell to even moderate sustained hyperglycemia and provide a biochemical rationale for achieving tight glucose control in diabetic patients. They also suggest that PLC activation plays a critically important role in the physiological regulation of glucose-induced secretion and in the desensitization of release that follows chronic hyperglycemia or hyperkalemia.  相似文献   

2.
Glucose-stimulated increases in mitochondrial metabolism are generally thought to be important for the activation of insulin secretion. Pyruvate dehydrogenase (PDH) is a key regulatory enzyme, believed to govern the rate of pyruvate entry into the citrate cycle. We show here that elevated glucose concentrations (16 or 30 vs 3 mM) cause an increase in PDH activity in both isolated rat islets, and in a clonal beta-cell line (MIN6). However, increases in PDH activity elicited with either dichloroacetate, or by adenoviral expression of the catalytic subunit of pyruvate dehydrogenase phosphatase, were without effect on glucose-induced increases in mitochondrial pyridine nucleotide levels, or cytosolic ATP concentration, in MIN6 cells, and insulin secretion from isolated rat islets. Similarly, the above parameters were unaffected by blockade of the glucose-induced increase in PDH activity by adenovirus-mediated over-expression of PDH kinase (PDK). Thus, activation of the PDH complex plays an unexpectedly minor role in stimulating glucose metabolism and in triggering insulin release.  相似文献   

3.
The beta-cell biochemical mechanisms that account for the compensatory hyperfunction with insulin resistance (so-called beta-cell adaptation) are unknown. We investigated glucose metabolism in isolated islets from 10-12-week-old Zucker fatty (ZF) and Zucker lean (ZL) rats (results expressed per mg/islet of protein). ZF rats were obese, hyperlipidemic, and normoglycemic. They had a 3.8-fold increased beta-cell mass along with 3-10-fold increases in insulin secretion to various stimuli during pancreas perfusion despite insulin content per milligram of beta-cells being only one-third that of ZL rats. Islet glucose metabolism (utilization and oxidation) was 1.5-2-fold increased in the ZF islets despite pyruvate dehydrogenase activity being 30% lowered compared with the ZL islets. The reason was increased flux through pyruvate carboxylase (PC) and the malate-pyruvate and citrate-pyruvate shuttles based on the following observations (% ZL islets): increased V(max) of PC (160%), malate dehydrogenase (170%), and malic enzyme (275%); elevated concentrations of oxaloacetate (150%), malate (250%), citrate (140%), and pyruvate (250%); and 2-fold increased release of malate from isolated mitochondria. Inhibition of PC by 5 mm phenylacetic acid markedly lowered glucose-induced insulin secretion in ZF and ZL islets. Thus, our results suggest that PC and the pyruvate shuttles are increased in ZF islets, and this accounts for glucose mitochondrial metabolism being increased when pyruvate dehydrogenase activity is reduced. As the anaplerosis pathways are implicated in glucose-induced insulin secretion and the synthesis of glucose-derived lipid and amino acids, our results highlight the potential importance of PC and the anaplerosis pathways in the enhanced insulin secretion and beta-cell growth that characterize beta-cell adaptation to insulin resistance.  相似文献   

4.
Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.  相似文献   

5.
Addition of pyruvate to rat islets perifused in the presence of 5 mM-glucose elicited an immediate pronounced biphasic stimulation of insulin secretion. At lower concentrations of glucose (2.5 mM), only the initial, transient, phase of secretion was observed. Pyruvate inhibited 45Ca2+ efflux from islets at 2.5 mM-glucose and stimulated efflux at 5 mM-glucose. Pyruvate also decreased the rate of efflux of 86Rb+ from perifused islets. A marked stimulation of insulin secretion and 45Ca2+ efflux rate was observed in response to 3-fluoropyruvate and 3-bromopyruvate, compounds which inhibited oxidative metabolism of [14C]glucose and [14C]pyruvate in islets. The stimulatory effects of 3-fluoro- and 3-bromo-pyruvate were associated with enhanced 86Rb+ efflux. Withdrawal of pyruvate or halogenated analogues from the perfusate resulted in a secondary stimulation of insulin release, 45Ca2+ efflux and, to some extent, 86Rb+ efflux rates. Pyruvate, 3-fluoropyruvate and 3-bromopyruvate were all effective in promoting intracellular acidification and a rise in cytosolic Ca2+ concentration, as judged from fluorescence measurements in HIT-T15 cells loaded with 2',7'-biscarboxyethyl-5'(6')-carboxyfluorescein and Quin 2 respectively. It is proposed that oxidative metabolism of pyruvate is not a prerequisite for its stimulatory actions on pancreatic beta-cells. An alternative mechanism of activation by pyruvate and its halogenated derivatives is proposed, based on the possible electrogenic flux of these anions across the cell membrane.  相似文献   

6.
The effect of various inhibitors of insulin secretion such as mannoheptulose (20 mM), atropine (1 mM), diphenylhydantoin (20 microng/ml), high concentration of Mg++ (5.3 mM) in the presence of 20 mM glucose (control) on insulin content and secretion from collagenase-isolated rat pancreatic islets was studied in vitro by cultivation of islets up to 5 or 9 days in glass Petri dishes without attachment. In a following short-term incubation for 60 min the glucose-induced insulin release without and with theophylline (5 mM) was investigated. Islets cultivated at 5 mM glucose and at 20 mM glucose with the inhibitors mannoheptulose or atropine lost the responsiveness to glucose and theophylline whereas such islets cultivated at 20 mM glucose alone or with diphenylhydantoin (DPH) or 5.3 mg Mg++ showed a stimulation of insulin secretion by glucose and theophylline. Compared, however, with freshly isolated islets all cultivated islets were restricted in their maximal glucose response and this defect was not evoked alone by quantitative changes in islet insulin content. Nevertheless, culture conditions which facilitate a net increase of insulin (content and release) during cultivation influenced also positively the glucose-induced insulin release without and with 5 mM theophylline in the following short-term experiments.  相似文献   

7.
The secretion of insulin from perifused rat pancreatic islets was stimulated by raising the glucose concentration from 5.6 to 20 mM or by exposure to tolbutamide. The addition of sodium lactate (40 mM) to islets perifused in the presence of glucose (5.6 mM) resulted in a small, transient, rise in the rate of secretion. The subsequent removal of lactate, but not glucose or tolbutamide, from the perifusate produced a dramatic potentiation of insulin release. The rate of efflux of 45Ca2+ was also increased when islets were exposed to a high concentration of glucose or lactate or to tolbutamide, and again subsequently upon withdrawal of lactate. Efflux of 86Rb+ was modestly inhibited upon addition of lactate and markedly enhanced by the subsequent withdrawal of lactate from islets. The output of [14C]lactate from islets incubated in the presence of [U-14C]glucose increased linearly with increasing concentrations of glucose (1-25 mM). It is proposed that the activation of islets by the addition or withdrawal of lactate is not due to increased oxidative flux, but occurs as a result of the electrogenic passage of lactate ions across the plasma membrane, resulting in islet-cell depolarization, Ca2+ entry and insulin secretion. The production of lactate via the glycolytic pathway, and the subsequent efflux of lactate from the islet cells with concomitant exchange of H+ for Na+, could be a major determinant of depolarization and hence insulin secretion, in response to glucose.  相似文献   

8.
The stimulatory effect of dopamine through dopamine D2 receptor on glucose-induced insulin secretion was studied in the pancreatic islets in vitro. Dopamine significantly stimulated insulin secretion at a concentration of 10-8 M in the presence of high glucose (20 mM). The higher concentrations of dopamine (10(-7)-10(-4)) inhibited glucose-induced insulin secretion in the presence of both 4 mM and 20 mM glucose. Stimulatory and inhibitory effect of dopamine on glucose-induced insulin secretion was reverted by the addition of dopamine D2 receptor antagonists such as butaclamol and sulpiride. Norepinephrine (NE) at 10(-4) M concentration inhibited the dopamine uptake as well as its stimulatory effect at 10(-8) M concentration on glucose induced insulin secretion. Our results suggest that dopamine exerts a differential effect on glucose-induced insulin secretion through dopamine D2 receptor and it is essential for the regulation of glucose-induced insulin secretion by pancreatic islets.  相似文献   

9.
10.
Regulation of PDK mRNA by high fatty acid and glucose in pancreatic islets   总被引:1,自引:0,他引:1  
Pyruvate dehydrogenase (PDH) converts pyruvate to acetyl-CoA, links glycolysis to the Krebs cycle, and plays an important role in glucose metabolism and insulin secretion in pancreatic beta cells. In beta cells from obese and Type 2 diabetic animals, PDH activity is significantly reduced. PDH is negatively regulated by multiple pyruvate dehydrogenase kinase (PDK) isotypes (PDK subtypes 1-4). However, we do not know whether fatty acids or high glucose modulate PDKs in islets. To test this we determined PDH and PDK activities and PDK gene and protein expression in C57BL/6 mouse islets. Both high palmitate and high glucose reduced active PDH activity and increased PDK activity. The gene and protein for PDK3 were not expressed in islets. Palmitate up-regulated mRNA expression of PDK1 (2.9-fold), PDK2 (1.9-fold), and PDK4 (3.1-fold). High glucose increased PDK1 (1.8-fold) and PDK2 (2.7-fold) mRNA expression but reduced PDK4 mRNA expression by 40 percent in cultured islets. Changed PDK expression was confirmed by Western blotting. These results demonstrate that in islet cells both fat and glucose regulate PDK gene and protein expression and indicate that hyperglycemia and hyperlipidemia contribute to the decline in diabetic islet PDH activity by increasing mRNA and protein expression of PDK.  相似文献   

11.
In islet beta-cells and INS-1 cells both the high activity of malic enzyme and the correlation of insulin secretion rates with pyruvate carboxylase (PC) flux suggest that a pyruvate-malate cycle is functionally relevant to insulin secretion. Expression of the malic enzyme isoforms in INS-1 cells and rat islets was measured, and small interfering RNA was used to selectively reduce isoform mRNA expression in INS-1 cells to evaluate its impact on insulin secretion. The cytosolic NADP(+)-specific isoform (ME1) was the most abundant, with the mitochondrial isoforms NAD(+)-preferred (ME2) expressed at approximately 50%, and the NADP(+)-specific (ME3) at approximately 10% compared with ME1. Selective reduction (89 +/- 2%) of cytosolic ME1 mRNA expression and enzyme activity significantly reduced glucose (15 mM:41 +/- 6%, p < 0.01) and amino acid (4 mM glutamine +/- 10 mM leucine: 39 +/- 6%, p < 0.01)-stimulated insulin secretion. Selective small interfering RNA reduction (51 +/- 6%) of mitochondrial ME2 mRNA expression did not impact glucose-induced insulin secretion, but decreased amino acid-stimulated insulin secretion by 25 +/- 4% (p < 0.01). Modeling of the metabolism of [U-(13)C]glucose by its isotopic distribution in glutamate indicates a second pool of pyruvate distinct from glycolytically derived pyruvate in INS-1 cells. ME1 knockdown decreased flux of both pools of pyruvate through PC. In contrast, ME2 knockdown affected only PC flux of the pyruvate derived from glutamate metabolism. These results suggest a physiological basis for two metabolically and functionally distinct pyruvate cycles. The cycling of pyruvate by ME1 generates cytosolic NADPH, whereas mitochondrial ME2 responds to elevated amino acids and serves to supply sufficient pyruvate for increased Krebs cycle flux when glucose is limiting.  相似文献   

12.
The involvement of cyclic AMP-dependent protein kinase A (PKA) in the exocytotic release of insulin from rat pancreatic islets was investigated using the Rp isomer of adenosine 3',5'-cyclic phosphorothioate (Rp-cAMPS). Preincubation of electrically permeabilised islets with Rp-cAMPS (1 mM, 1 h, 4 degrees C) inhibited cAMP-induced phosphorylation of islet proteins of apparent molecular weights in the range 20-90 kDa, but did not affect basal (50 nM Ca2+) nor Ca2(+)-stimulated (10 microM) protein phosphorylation. Similarly, Rp-cAMPS (500 microM) inhibited both cAMP- (100 microM) and 8BrcAMP-induced (100 microM) insulin secretion from electrically permeabilised islets without affecting Ca2(+)-stimulated (10 microM) insulin release. In intact islets, Rp-cAMPS (500 microM) inhibited forskolin (1 microM, 10 microM) potentiation of insulin secretion, but did not significantly impair the insulin secretory response to a range of glucose concentrations (2-20 mM). These results suggest that cAMP-induced activation of PKA is not essential for either basal or glucose-stimulated insulin secretion from rat islets.  相似文献   

13.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

14.
1. D-Glucose (0.5-16.7 mM) preferentially stimulates aerobic glycolysis and D-[3,4-14C]glucose oxidation, relative to D-[5-3H]glucose utilization in rat pancreatic islets, the concentration dependency of such a preferential effect displaying a sigmoidal pattern. 2. Inorganic and organic calcium antagonists, as well as Ca2+ deprivation, only cause a minor decrease in the ratio between D-[3,4-14C]glucose oxidation and D-[5-3H]glucose utilization in islets exposed to a high concentration of the hexose (16.7 mM). 3. Non-glucidic nutrient secretagogues such as 2-aminobicyclo[2,2,1]heptane-2-carboxylate (BCH), 2-ketoisocaproate and 3-phenylpyruvate fail to stimulate aerobic glycolysis and D-[3,4-14C]glucose oxidation in islets exposed to 6.0 mM D-glucose. Nevertheless, BCH augments [1-14C]pyruvate and [2-14C]pyruvate oxidation. 4. The glucose-induced increment in the paired ratio between D-[3,4-14C]glucose oxidation and D-[5-3H]glucose utilization is impaired in the presence of either cycloheximide or ouabain. 5. These findings suggest that the preferential effect of D-glucose upon aerobic glycolysis and pyruvate decarboxylation is not attributable solely to a Ca(2+)-induced activation of FAD-linked glycerophosphate dehydrogenase and/or pyruvate dehydrogenase, but may also involve an ATP-modulated regulatory process.  相似文献   

15.
Norepinephrine and epinephrine, in the presence of the beta-adrenergic antagonist propranolol (10(-5) M), stimulated adipocyte pyruvate dehydrogenase at low concentrations but inhibited the enzyme at higher concentrations. The alpha-adrenergic agonist, phenylephrine, rapidly stimulated pyruvate dehydrogenase activity in a dose-dependent manner with maximal stimulation observed at 10(-6) M. The stimulation of pyruvate dehydrogenase by phenylephrine was mediated via alpha 1-receptors. Inhibition of pyruvate dehydrogenase by catecholamines was mediated via beta-adrenergic receptors, since the beta-agonist, isoproterenol, and dibutyryl cAMP produced similar effects. Like insulin, alpha-adrenergic agonists increased the active form of pyruvate dehydrogenase without changing the total enzyme activity and cellular ATP concentration. The effects induced by maximally effective concentrations of insulin and alpha-adrenergic agonists were nonadditive. The ability of phenylephrine and methoxamine to stimulate pyruvate dehydrogenase and phosphorylase and to inhibit glycogen synthase was not affected by the removal of extracellular Ca2+. Similarly, the stimulation of pyruvate dehydrogenase and glycogen synthase by insulin was also observed under the same conditions. However, when intracellular adipocyte Ca2+ was depleted by incubating cells in a Ca2+-free buffer containing 1 mM ethylene glycol bis(beta-amino-ethyl ether)-N,N,N' -tetraacetic acid, the actions of alpha-adrenergic agonists, but not insulin, on pyruvate dehydrogenase were completely abolished. Vasopressin and angiotensin II also stimulated pyruvate dehydrogenase in a dose-dependent manner with enhancement of glucose oxidation and lipogenesis. Our results demonstrate that the Ca2+ -dependent hormones stimulate pyruvate dehydrogenase and lipogenesis in isolated rat adipocytes, and the action is dependent upon intracellular, but not extracellular, Ca2+.  相似文献   

16.
Pancreatic islets produce pulses of insulin and other hormones that maintain normal glucose homeostasis. These micro-organs possess exquisite glucose-sensing capabilities, allowing for precise changes in pulsatile insulin secretion in response to small changes in glucose. When communication among these cells is disrupted, precision glucose sensing falters. We measured intracellular calcium patterns in 6-mM-steps between 0 and 16 mM glucose, and also more finely in 2-mM-steps from 8 to 12 mM glucose, to compare glucose sensing systematically among intact islets and dispersed islet cells derived from the same mouse pancreas in vitro. The calcium activity of intact islets was uniformly low (quiescent) below 4 mM glucose and active above 8 mM glucose, whereas dispersed beta-cells displayed a broader activation range (2-to-10 mM). Intact islets exhibited calcium oscillations with 2-to-5-min periods, yet beta-cells exhibited longer 7–10 min periods. In every case, intact islets showed changes in activity with each 6-mM-glucose step, whereas dispersed islet cells displayed a continuum of calcium responses ranging from islet-like patterns to stable oscillations unaffected by changes in glucose concentration. These differences were also observed for 2-mM-glucose steps. Despite the diversity of dispersed beta-cell responses to glucose, the sum of all activity produced a glucose dose-response curve that was surprisingly similar to the curve for intact islets, arguing against the importance of “hub cells” for function. Beta-cells thus retain many of the features of islets, but some are more islet-like than others. Determining the molecular underpinnings of these variations could be valuable for future studies of stem-cell-derived beta-cell therapies.  相似文献   

17.
Vitrification of human islets of Langerhans   总被引:2,自引:0,他引:2  
Cryopreservation of human islets of Langerhans by vitrification was studied. Isolated islets were divided into four groups: (1) control islets which were cultured for 6 days, (2) islets which were vitrified after 2 days of culture, (3) control islets which were cultured for 10-13 days, and (4) islets which were vitrified after 6-9 days of culture. After warming, islets from groups 2 and 4 were cultured for 4 days. The thus treated islets were investigated with respect to insulin secretion in the presence of 2.5 or 25 mM glucose, capacity to survive during postwarming culture, and morphology. The insulin secretion in islets from all groups could be stimulated by an increase of the concentration of glucose from 2.5 to 25 mM. No significant differences were observed between the insulin secretions of the vitrified and control islets or between the islets vitrified after 2 and 6-9 days of culture. It is concluded that human islets of Langerhans cryopreserved by vitrification are functional in vitro.  相似文献   

18.
A potential role of arachidonic acid in the modulation of insulin secretion was investigated by measuring its effects on calmodulin-dependent protein kinase and protein kinase C in islet subcellular fractions. The results were interpreted in the light of arachidonic acid effects on insulin secretion from intact islets. Arachidonic acid could replace phosphatidylserine in activation of cytosolic protein kinase C (K0.5 of 10 microM) and maximum activation was observed at 50 microM arachidonate. Arachidonic acid did not affect the Ca2+ requirement of the phosphatidylserine-stimulated activity. Arachidonic acid (200 microM) inhibited (greater than 90%) calmodulin-dependent protein kinase activity (K0.5 = 50-100 microM) but modestly increased basal phosphorylation activity (no added calcium or calmodulin). Arachidonic acid inhibited glucose-sensitive insulin secretion from islets (K0.5 = 24 microM) measured in static secretion assays. Maximum inhibition (approximately 70%) was achieved at 50-100 microM arachidonic acid. Basal insulin secretion (3 mM glucose) was modestly stimulated by 100 microM arachidonic acid but in a non-saturable manner. In perifusion secretion studies, arachidonic acid (20 microM) had no effect on the first phase of glucose-induced secretion but nearly completely suppressed second phase secretion. At basal glucose (4 mM), arachidonic acid induced a modest but reproducible biphasic insulin secretion response which mimicked glucose-sensitive secretion. However, phosphorylation of an 80 kD protein substrate of protein kinase C was not increased when intact islets were incubated with arachidonic acid, suggesting that the small increases in insulin secretion seen with arachidonic acid were not mediated by protein kinase C. These data suggest that arachidonic acid generated by exposure of islets to glucose may influence insulin secretion by inhibiting the activity of calmodulin-dependent protein kinase but probably has little effect on protein kinase C activity.  相似文献   

19.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

20.
Increasing concentrations of pyruvate failed to stimulate proinsulin biosynthesis and insulin release in freshly isolated islets. Glycolytic flux (3H2O from [5-3H]glucose) decreased by 80-85%, but decarboxylation of [1(-14)C]pyruvate was unaffected in islets tested immediately after alloxan exposure. This strongly suggested that in freshly isolated islets, beta-cells, in relation to other islet cells, hardly contribute to the decarboxylation of pyruvate. Non-alloxan-treated cultured islets decarboxylated 2-2.5 times as much pyruvate as did alloxan-treated islets cultured for 15-18h. Thus the contribution of beta-cells to the metabolism of pyruvate after culturing markedly increased. Concomitantly beta-cells became responsive to pyruvate. At 20mM-pyruvate, release of prelabelled proinsulin and insulin and incorporation of [3H]leucine into proinsulin reached values approximately half of those obtained with 20mM-glucose. Lactate was as effective as pyruvate in inducing responses in cultured islets. The experiments indicate that a critical degree of substrate utilization is necessary for the generation of signals for insulin release and proinsulin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号