首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Donini A  Lange AB 《Peptides》2002,23(4):683-691
The role of calcium as a second messenger in the crustacean cardioactive peptide (CCAP)-induced contractions of the locust oviducts was investigated. Incubation of the oviducts in a calcium-free saline containing, a preferential calcium cation chelator, or an extracellular calcium channel blocker, abolished CCAP-induced contractions, indicating that the effects of CCAP on the oviducts are calcium-dependent. In contrast, sodium free saline did not affect CCAP-induced contractions. Co-application of CCAP to the oviducts with preferential L-type voltage-dependent calcium channel blockers reduced CCAP-induced contractions by 32-54%. Two preferential T-type voltage-dependent calcium channel blockers both inhibited CCAP-induced oviduct contractions although affecting different components of the contractions. Amiloride decreased the tonic component of CCAP-induced contractions by 40-55% and flunarizine dihydrochloride decreased the frequency of CCAP-induced phasic contractions by as much as 65%, without affecting tonus. Flunarizine dihydrochloride did not alter the proctolin-induced contractions of the oviducts. Results suggest that the actions of CCAP are partially mediated by voltage-dependent calcium channels similar to vertebrate L-type and T-type channels. High-potassium saline does not abolish CCAP-induced contractions indicating the presence of receptor-operated calcium channels that mediate the actions of CCAP on the oviducts. The involvement of calcium from intracellular stores in CCAP-induced contractions of the oviducts is likely since, an intracellular calcium antagonist decreased CCAP-induced contractions by 30-35%.  相似文献   

2.
Using a microdialysis method, we have investigated effects of the voltage-dependent calcium channel blockers, verapamil, nicardipine, omega-conotoxin and flunarizine on the dopamine release and metabolism in the striatum of freely moving rat. Perfusion of verapamil (1-300 microM) and nicardipine (1-100 microM), an L-type calcium channel blocker, into the striatum through the dialysis membrane showed a dose-dependent decrease of dopamine release in the dialysate and slight increase of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. Treatment of omega-conotoxin (0.1, 1 microM), an N-type channel blocker, decreased about 50% basal dopamine release and slightly decreased DOPAC and HVA levels. Treatment with flunarizine (10 microM), an T-type channel blocker, did not affect the dopamine release and metabolism. From these data, it appears that treatments of the L- and N-type voltage-dependent calcium channel blockers in rat striatum suppress basal dopamine release, but T-type blocker does not suppress it, suggesting that L-, N- and T-type calcium channels regulate in vivo dopamine release in a different mechanism.  相似文献   

3.
Villocarines A-D (1-4), four new indole alkaloids have been isolated from the leaves of Uncaria villosa (Rubiaceae) and their structures were elucidated by 2D NMR methods and chemical correlations. Villocarine A (1) showed vasorelaxation activity against rat aortic ring and showed inhibition effect on vasocontraction of depolarized aorta with high concentration potassium, and also inhibition effect on phenylephrine (PE)-induced contraction in the presence of nicardipine in a Ca(2+) concentration-dependent manner. The vasorelaxant effect by 1 might be attributed mainly to inhibition of calcium influx from extracellular space through voltage-dependent calcium channels (VDC) and/or receptor-operated Ca(2+)-channels (ROC), and also partly mediated through the increased release of NO from endothelial cells and opening of voltage-gated K(+)-channels.  相似文献   

4.
The mineralocorticoid aldosterone plays an important role in the regulation of plasma electrolyte homeostasis. Exposure of acutely isolated rat adrenal zona glomerulosa cells to elevated K(+) activates voltage-gated calcium channels and initiates a calcium-dependent increase in aldosterone synthesis. We developed a novel 96-well format aldosterone secretion assay to rapidly evaluate the effect of known T- and L-type calcium channel antagonists on K(+)-stimulated aldosterone secretion and better define the role of voltage-gated calcium channels in this process. Reported T-type antagonists, mibefradil and Ni(2+), and selected L-type antagonist dihydropyridines, inhibited K(+)-stimulated aldosterone synthesis. Dihydropyridine-mediated inhibition occurred at concentrations which had no effect on rat alpha1H T-type Ca(2+) currents. In contrast, below 10 microM, the L-type antagonists verapamil and diltiazem showed only minimal inhibitory effects. To examine the selectivity of the calcium channel antagonist-mediated inhibition, we established an aldosterone secretion assay in which 8Br-cAMP stimulates aldosterone secretion independent of extracellular calcium. Mibefradil remained inhibitory in this assay, while the dihydropyridines had only limited effects. Taken together, these data demonstrate a role for the L-type calcium channel in K(+)-stimulated aldosterone secretion. Further, they confirm the need for selective T-type calcium channel antagonists to better address the role of T-type channels in K(+)-stimulated aldosterone secretion.  相似文献   

5.
Leukotriene B4 (5S,12R-dihydroxy-6,14-cis,8,10-trans-eicosatetraenoic acid, LTB4) is released from neutrophils exposed to calcium ionophores. To determine whether LTB4 might be produced by ligand-receptor interactions at the plasmalemma, we treated human neutrophils with serum-treated zymosan (STZ), heat-aggregated IgG and fMet-Leu-Phe (fMLP), agonists at the C3b, Fc and fMLP receptors respectively. STZ (10 mg/ml) provoked the formation of barely detectable amounts of LTB4 (0.74 ng/10(7) cells); no omega-oxidized metabolites of LTB4 were found. Adding 10 microM-arachidonate did not significantly increase production of LTB4 or its metabolites. Addition of 50 microM-arachidonate (an amount which activates protein kinase C) before STZ caused a 40-fold increase in the quantity of LTB4 and its omega-oxidation products. Neither phorbol myristate acetate (PMA, 200 ng/ml) nor linoleic acid (50 microM), also activators of protein kinase C, augmented generation of LTB4 by cells stimulated with STZ. Neither fMLP (10(-6) M) nor aggregated IgG (0.3 mg/ml) induced LTB4 formation (less than 0.01 ng/10(7) cells). Moreover, cells exposed to STZ, fMLP, or IgG did not form all-trans-LTB4 or 5-hydroxyeicosatetraenoic acid; their failure to make LTB4 was therefore due to inactivity of neutrophil 5-lipoxygenase. However, adding 50 microM-arachidonate to neutrophil suspensions before fMLP or IgG triggered LTB4 production, the majority of which was metabolized to its omega-oxidized products (fMLP, 20.2 ng/10(7) cells; IgG, 17.1 ng/10(7) cells). The data show that neutrophils exposed to agonists at defined cell-surface receptors produce significant quantities of LTB4 only when treated with non-physiological concentrations of arachidonate.  相似文献   

6.
Platelet-activating factor (PAF) is an autocrine trophic/survival factor for the preimplantation embryo. PAF induced an increase in intracellular calcium concentration ([Ca2+]i) in the 2-cell embryo that had an absolute requirement for external calcium. L-type calcium channel blockers (diltiazem, verapamil, and nimodipine) significantly inhibited PAF-induced Ca2+ transients, but inhibitors of P/Q type (omega-agatoxin; omega-conotoxin MVIIC), N-type (omega-conotoxin GVIA), T-type (pimozide), and store-operated channels (SKF 96365 and econazole) did not block the transient. mRNA and protein for the alpha1-C subunit of L-type channels was expressed in the 2-cell embryo. The L-type calcium channel agonist (+/-) BAY K 8644 induced [Ca2+]i transients and, PAF and BAY K 8644 each caused mutual heterologous desensitization of each other's responses. Depolarization of the embryo (75 mM KCl) induced a [Ca2+]i transient that was inhibited by diltiazem and verapamil. Whole-cell patch-clamp measurements detected a voltage-gated channel (blocked by diltiazem, verapamil, and nifedipine) that was desensitized by prior responses of embryos to exogenous or embryo-derived PAF. Replacement of media Ca2+ with Mn2+ allowed Mn2+ influx to be observed directly; activation of a diltiazem-sensitive influx channel was an early response to PAF. The activation of a voltage-gated L-type calcium channel in the 2-cell embryo is required for normal signal transduction to an embryonic trophic factor.  相似文献   

7.
In the bovine adrenal glomerulosa cell, calcium influx through voltage-dependent calcium channels is critical to maintaining an aldosterone secretory response. In patch clamp, atrial natriuretic peptide (ANP) inhibits T-type calcium channel current yet stimulates L-type calcium channel current. In the present study the channel effects of ANP observed in the patch-clamp configuration were extended and related to populations of cells. We observed the following. (i) The effect of ANP on T-channel current resulted in the reduction in the open state probability. ANP decreased the mean open state duration from 14.2 to 1.8 ms/sweep. (ii) In the weakly depolarized cell stimulated by 8 mM K+, ANP reduced the level of aequorin luminescence (a measure of cytosolic calcium) and completely inhibited the stimulated rate of aldosterone secretion, returning it to prestimulation values. These effects are consistent with a decrease in net calcium channel influx and the reported inhibition of T-channel current. In contrast, the calcium channel blocker, nitrendipine, which at low dose selectively blocks L-type calcium channel flux, only slightly reduced luminescence, and partially inhibited the sustained secretory response. (iii) In the strongly depolarized cell, stimulated by 60 mM K+, ANP increased the level of aequorin luminescence consistent with an increase in net calcium channel influx and the reported stimulation of L-channel current. These results indicate that under physiological conditions the inhibition of T-type calcium channels may be involved in the inhibition of the aldosterone secretion induced by ANP.  相似文献   

8.
Growth of preimplantation embryos is influenced by autocrine trophic factors that need to act by the 2-cell stage, but their mode of action is not yet described. This report shows that late zygote and 2-cell stage mouse embryos responded to embryo-derived platelet-activating factor (PAF) with transient increases in intracellular calcium concentration ([Ca(2+)](i)). [Ca(2+)](i) transients were single global events and were specifically induced by embryo-derived PAF. They were blocked by inhibition of phospholipase C (U 73122) and an inositol trisphosphate (IP(3)) receptor antagonist (xestospongin C), indicating the release of calcium from IP(3)-sensitive intracellular stores. Transients were also inhibited by the absence of calcium from extracellular medium and partially inhibited by treatment with dihydropyridine (nifedipine, 10 micrometer), but not pimozide (an inhibitor of an embryonic T-type calcium channel). (+/-)BAY K8644 (an L-type channel agonist) induced [Ca(2+)](i) transients, yet these were completely inhibited by nifedipine (10 micrometer). The complete inhibition of BAY K8644, but only partial inhibition of PAF by nifedipine shows that L-type channels were only partly responsible for the calcium influx. Depolarization of 2-cell embryos by 50 mm K(+) did not inhibit PAF-induced calcium transients, showing that the influx channels were not voltage-dependent. Depletion of intracellular calcium stores by thapsigargin revealed the presence of store-operated channels. The interdependent requirement for IP(3)-sensitive internal calcium stores and extracellular calcium in the generation of PAF-induced transients may be explained by a requirement for capacitative calcium entry via store-operated channels. A functionally important role for the PAF-induced transients is supported by the observation that inhibition of [Ca(2+)](i) transients by a PAF-antagonist (WEB 2086) or an intracellular calcium chelator (1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetrakis-acetoxymethyl ester; BAPTA-AM) caused marked inhibition of early embryo development. Growth inhibition by BAPTA-AM was relieved by addition of exogenous PAF.  相似文献   

9.
A previous study showed that antitumor-analgesic peptide (AGAP), a novel recombinant polypeptide, which had been expressed in Escherichia coli, exhibits analgesic and antitumor effects in mice. In the present study, we investigated the underlying analgesic mechanism of AGAP. The effect of AGAP on voltage-gated calcium channels (VGCCs) was assessed in acutely isolated rat dorsal root ganglia (DRG) neurons using the whole-cell patch clamp technique. The results showed that AGAP potently inhibited VGCCs, especially high-voltage activated (HVA) calcium channels. AGAP inhibited HVA and T-type calcium currents in a dose-dependent manner, but had no significant effect on their dynamic functions in rat small-diameter DRG neurons. AGAP inhibited N- and L-type calcium currents at 78.2% and 57.3%, respectively. Thus, the present study demonstrates that AGAP affects calcium currents through the inhibition of N-, L- and T-type channels in DRG neurons, explaining the potential mechanisms of antinociception.  相似文献   

10.
Leukotrienes generated by 5-lipoxygenase (5-LOX)-catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1-2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B(4) (LTB(4)) with an IC(50) of 5-20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC(50) for α-tocopherol. 13'-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB(4) with an IC(50) of 4-7 μM and potently inhibited human recombinant 5-LOX activity with an IC(50) of 0.5-1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca(2+) increase and/or LTB(4) formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13'-carboxychromanol decreased cellular production of LTB(4) regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo.  相似文献   

11.
Changes in intracellular calcium regulate countless biological processes. In arterial smooth muscle, voltage-dependent L-type calcium channels are major conduits for calcium entry with the primary function being determination of arterial diameter. Similarly, changes in intracellular redox status, either discrete controlled changes or global pathological perturbations, are also critical determinants of cell function. We recently reported that in arterial smooth muscle cells, local generation of hydrogen peroxide leads to colocalized calcium entry through L-type calcium channels. Here we extend our investigation into mechanisms linking hydrogen peroxide to calcium influx through L-type calcium channels by focusing on the role of protein kinase C (PKC). Our data indicate that stimulation of L-type calcium channels by hydrogen peroxide requires oxidant-dependent increases in PKC catalytic activity. This effect is independent of classical cofactor-dependent activation of PKC by diacylglycerol. These data provide additional experimental evidence supporting the concept of oxidative stimulation of L-type calcium channels.  相似文献   

12.
Changes in intracellular calcium regulate countless biological processes. In arterial smooth muscle, voltage-dependent L-type calcium channels are major conduits for calcium entry with the primary function being determination of arterial diameter. Similarly, changes in intracellular redox status, either discrete controlled changes or global pathological perturbations, are also critical determinants of cell function. We recently reported that in arterial smooth muscle cells, local generation of hydrogen peroxide leads to colocalized calcium entry through L-type calcium channels. Here we extend our investigation into mechanisms linking hydrogen peroxide to calcium influx through L-type calcium channels by focusing on the role of protein kinase C (PKC). Our data indicate that stimulation of L-type calcium channels by hydrogen peroxide requires oxidant-dependent increases in PKC catalytic activity. This effect is independent of classical cofactor-dependent activation of PKC by diacylglycerol. These data provide additional experimental evidence supporting the concept of oxidative stimulation of L-type calcium channels.  相似文献   

13.
14.
Extremely low-frequency electromagnetic fields (ELF-EMF) causes various biological effects through altering intracellular calcium homeostasis. The role of high voltage-gated (HVA) calcium channels in ELF-EMF induced effects has been extensively studied. However, the effect of ELF-EMF on low-voltage-gated (LVA) T-type calcium channels has not been reported. In this study, we test the effect of ELF-EMF (50 Hz) on human T-type calcium channels transfected in HEK293 cells. Conversely to its stimulant effects on HVA channels, ELF-EMF exposure inhibited all T-type (Cav3.1, Cav3.2 and Cav3.3) channels. Neither the protein expression nor the steady-state activation and inactivation kinetics of Cav3.2 channels were altered by ELF-EMF (50 Hz, 0.2 mT) exposure. Exposure to ELF-EMF increased both arachidonic acid (AA) and leukotriene E4 (LTE4) levels in HEK293 cells. CAY10502 and bestatin, which block the increase of AA and LTE4 respectively, abrogated the ELF-EMF inhibitory effect on Cav3.2 channels. Exogenous LTE4 mimicked the ELF-EMF inhibition of T-type calcium channels. ELF-EMF (50 Hz) inhibits native T-type calcium channels in primary cultured mouse cortical neurons via LTE4. We conclude that 50 Hz ELF-EMF inhibits T-type calcium channels through AA/LTE4 signaling pathway.  相似文献   

15.
L-651,582, 5-amino-[4-(4-chlorobenzoyl)-3,5-dichlorobenzyl]-1, 2,3-triazole-4-carboxamide, is an antiproliferative and antiparasitic agent which inhibits nucleotide metabolism in mammalian cells. The drug equivalently inhibited 3H-hypoxanthine, 14C-adenine, and 14C-formate incorporation into nucleotide pools in Madin-Darby bovine kidney (MDBK) cells, suggesting depletion of the supply of phosphoribosyl pyrophosphate, (PRPP), required for each of these independent pathways. Inhibition of nucleotide metabolism correlated with inhibition of proliferation for three cell types with differing sensitivities toward the drug. L-651,582 inhibited incorporation of 3H-hypoxanthine into nucleotide pools with either glucose, uridine, or ribose as carbon source suggesting a block at PRPP synthetase, rather than a block in a pathway supplying ribose-5-phosphate. PRPP synthetase was not inhibited directly by the compound, indicating regulation of the enzyme in intact cells. Drug treatment did not kill cells but reduced the fraction of cells in S and G2/M while increasing the population in G1. Inhibition of uptake of 45Ca was demonstrated at concentrations identical to those required for inhibition of nucleotide metabolism or proliferation. Inhibition of cellular PRPP biosynthesis rates were also observed using EGTA to lower calcium levels. These data suggest a previously unrecognized link between calcium entry, the regulation of nucleotide biosynthesis at PRPP synthetase, and the rate of proliferation of mammalian cells.  相似文献   

16.
Calcium entry into excitable cells through voltage-gated calcium channels can be influenced by both the rate and pattern of action potentials. We report here that a cloned neuronal alpha 1C L-type calcium channel can be facilitated by positive pre-depolarization. Both calcium and barium were effective as charge carriers in eliciting voltage-dependent facilitation. The induction of facilitation was shown to be independent of intracellular calcium levels, G-protein interaction and the level of phosphatase activity. Facilitation was reduced by the injection of inhibitors of protein kinase A and required the coexpression of a calcium channel beta subunit. In contrast, three neuronal non-L-type calcium channels, alpha 1A, alpha 1B and alpha 1E, were not subject to voltage-dependent facilitation when coexpressed with a beta subunit. The results indicate that the mechanism of neuronal L-type calcium channel facilitation involves the interaction of alpha 1 and beta subunits and is dependent on protein kinase A activity. The selective voltage-dependent modulation of L-type calcium channels is likely to play an important role in neuronal physiology and plasticity.  相似文献   

17.
The hypothalamic decapeptide gonadotropin-releasing hormone stimulates mobilization of two discrete pools of calcium in clonal (alphaT3-1) and primary pituitary gonadotropes. A multidisciplinary approach was implemented to investigate the effects of discrete calcium fluctuations on the signaling pathways linking the gonadotropin-releasing hormone receptor to activation of mitogen-activated protein kinases and immediate early genes. Blockade of calcium influx through nifedipine-sensitive voltage-gated calcium channels reduced buserelin-induced activation of extracellular signal-regulated kinase (ERK) and c-Fos while activation of c-Jun N-terminal kinase and c-Jun was unaffected. Inhibition of buserelin-stimulated ERK activity by nifedipine was also observed in rat pituitary cells in primary culture. Direct activation of alphaT3-1 cell L-type calcium channels with the agonist Bay-K 8644 resulted in phosphorylation of ERK and induction of c-Fos. However, simple voltage-induced channel activation did not produce a sufficient calcium signal, since depolarization with 35 mM KCl failed to induce activation of ERK. Depletion of intracellular calcium stores with thapsigargin did not affect buserelin-induced ERK activation. An inhibitor of protein kinase C decreased calcium influx through nifedipine-sensitive calcium channels and phosphorylation of ERK induced by buserelin. Pharmacological inhibition of protein kinase C did not block Bay-K 8644-induced ERK activation. These observations suggest that calcium influx through L-type channels is required for GnRH-induced activation of ERK and c-Fos and that the influence of calcium lies downstream of protein kinase C.  相似文献   

18.
19.
The 5-lipoxygenase (5-LO) inhibitors BI-L-239 and A-64077 were compared with the 5-LO translocation inhibitor MK-886 for the ability to inhibit leukotriene B4 (LTB4) biosynthesis by chopped (1 mm3) guinea pig lung. LTB4 synthesis by ovalbumin-sensitized chopped lung tissue was determined after stimulation with either calcium ionophore (A23187) or antigen. With A23187 stimulation, MK-886 was more potent (IC50 = 0.39 +/- 0.23 microM, mean +/- SEM, p < 0.01) than BI-L-239 (IC50 = 2.48 +/- 0.46 microM) or A-64077 (IC50 = 4.68 +/- 0.70 microM) and BI-L-239 was more potent than A64077 (p < 0.02). Thus, the order of potency was MK-886 > BI-L-239 > A-64077 for inhibition of calcium ionophore-induced LTB4 generation. There was no significant differences in potency of the compounds in chopped lung stimulated with antigen: IC50 for LTB4 synthesis by A-64077 = 3.31 +/- 1.70 microM, for BI-L-239 = 9.06 +/- 4.94 microM, and for MK-886 = 13.33 +/- 7.91 microM. The ability of these compounds to inhibit contraction of tracheal tissue from actively sensitized guinea pigs in response to antigen was also determined in the presence of indomethacin (15 micrograms/ml), mepyramine, and atropine (5 micrograms each/ml). Both 5-LO inhibitors inhibited antigen-induced contraction, with IC50 values for BI-L-239 and A-64077 of 1.58 and 4.35 microM respectively. MK-886 was ineffective at inhibiting antigen-induced tracheal contraction in vitro at concentrations up to 30 microM. In summary, these compounds inhibit antigen-induced and A23187-induced leukotriene biosynthesis in guinea pig tissue. These 5-LO inhibitors were similarly effective at inhibiting antigen-induced tracheal contraction where MK-886 was ineffective.  相似文献   

20.
T-type Ca2+ channels in vascular smooth muscle: multiple functions   总被引:2,自引:0,他引:2  
Cribbs LL 《Cell calcium》2006,40(2):221-230
Vascular smooth muscle is a major constituent of the blood vessel wall, and its many functions depend on type and location of the vessel, developmental or pathological state, and environmental and chemical factors. Vascular smooth muscle cells (VSMCs) use calcium as a signal molecule for multiple functions. An important component of calcium signaling pathways is the entry of extracellular calcium via voltage-gated Ca2+ channels, which in vascular smooth muscle cells (VSMCs) are of two main types, the high voltage-activated (HVA) L-type and low voltage-activated (LVA) T-type channels. Whereas L-type channels function primarily to regulate Ca2+ entry for contraction, it is generally accepted that T-type Ca2+ channels do not contribute significantly to arterial vasoconstriction, with the possible exception of the renal microcirculation. T-type Ca2+ channels are also present in some veins that display spontaneous contractile activity, where they likely generate pacemaker activity. T-type Ca2+ channel expression has also been associated with normal and pathological proliferation of VSMCs, often stimulated by external cues in response to insult or injury. Expression of T-type channels has been linked to the G1 and S phases of the cell cycle, a period important for the signaling of gene expression necessary for cell growth, progression of the cell cycle and ultimately cell division. To better understand T-type Ca2+ channel functions in VSM, it will be necessary to develop new approaches that are specifically targeted to this class of Ca2+ channels and its individual members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号