首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Where high species richness and high human population density coincide, potential exists for conflict between the imperatives of species conservation and human development. We examine the coincidence of at‐risk bird species richness and human population in the countries of the tropical Andes. We then compare the performance of the expert‐driven Important Bird Areas (IBA) scheme against a hypothetical protected‐areas network identified with a systematic reserve selection algorithm seeking to maximize at‐risk bird species representation. Our aim is to assess the degree to which: IBAs contain a higher richness of at‐risk species than would be expected by chance, IBAs contain more people than would be expected by chance, and IBAs are congruent with complementary areas that maximize species representation with an equivalent number of sites. While the correlation of richness and population was low for the region as a whole, representation of all at‐risk bird species required many sites to be located in areas of high human population density. IBA sites contained higher human population densities than expected by chance (P < 0.05) and were markedly less efficient in representing at‐risk bird species of the region than sites selected using the reserve selection algorithm. Moreover, overlap between IBAs and these latter sites was very limited. Expert‐driven selection procedures may better reflect existing sociopolitical forces, including land ownership and management regimes, but are limited in their ability to develop an efficient, integrated network of sites to represent priority species. Reserve selection algorithms may serve this end by optimizing complementarity in species representation among selected sites, whether these sites are adopted independently or as a supplement to the existing reserve network. As tools of site selection, they may be particularly useful in areas such as the tropical Andes where complex patterns of species disjunction and co‐occurrence make the development of representative reserve networks particularly difficult. Furthermore, they facilitate making spatially explicit choices about how reserve sites are located in relation to human populations. We advocate their use not in replacement of approaches such as the IBA initiative but as an additional, complementary tool in ensuring that such reserve networks are developed as efficiently as practically possible.  相似文献   

2.
Southern Africa's subtropical forest biome, though small and highly fragmented, supports much of the region's biodiversity. With limited resources available for conservation and the exploitative use of forest escalating, identifying a network of priority forest reserves is important. We examine the distribution of forest birds, butterflies and mammals in KwaZulu-Natal, South Africa. Using an iterative algorithm we explore the efficiency of existing protected areas, species richness and rarity hotspots, prime forest sites (selected by forest area) and complementary networks as alternative approaches to priority reserve selection, as well as the potential use of indicator taxa. Existing protected areas represent 98% of species but are relatively inefficient in terms of area. Alternative selection criteria represent a high proportion of species (86–92%) and provide efficient bases for developing fully representative reserve networks. All species are represented within a network of 22 complementary quarter degree cells. This network includes several larger forests and existing protected areas and is recommended for priority conservation. Complementary networks identified separately for birds, butterflies and mammals overlap little, but each represents a high proportion of the remaining taxa, supporting their potential as representative 'indicator' taxa. The evolutionary history of the three main forest types in KwaZulu-Natal explains observed spatial patterns of alternative reserve networks. Priority areas are concentrated in scarp and coastal forest belts, regions of comparatively recent evolutionary activity with high species richness. Afromontane forest is older and less diverse, but its inclusion in any reserve network is necessary for the full representation of forest diversity.  相似文献   

3.
Minimum complementary sets of sites that represent each species at least once have been argued to provide a nominal core reserve network and the starting point for regional conservation programs. However, this approach may be inadequate if there is a tendency to represent several species at marginal areas within their ranges, which may occur if high efficiency results from preferential selection of sites in areas of ecological transition. Here we use data on the distributions of birds in South Africa and Lesotho to explore this idea. We found that for five measures that are expected to reflect the location of areas of ecological transition, complementary sets tend to select higher values of these measures than expected by chance. We recommend that methods for the identification of priority areas for conservation that incorporate viability concerns be preferred to minimum representation sets, even if this results in more costly reserve networks.  相似文献   

4.
The African elephant (Loxodonta africana) is known to greatly affect the structure and dynamics of vegetation. In Mwea National Reserve, elephants foraged mainly on Acacia ataxacantha and Grewia bicolor out of the five most preferred woody species. However, out of the five preferred woody species, only Grewia virosa and G. bicolor showed a positive association between their fresh use and past elephant use. All the five selected woody species showed high coppicing response after foraging, with the highest coppice growth rates recorded for Acacia brevispica and lowest for Grewia tembensis. The mean heights of woody species utilized by elephants were highest for A. brevispica and lowest for G. bicolor. The mean heights of coppices emerging after utilization by elephants were not significantly different for A. ataxacantha but were significantly shorter in the rest of the foraged species. Elephants avoided the coppices of many other woody species notably C. africana, A. tortilis, A. mellifera, Combretum aculeatum among others in the reserve. The objective of this study was to understand the capacity of woody species to recover after utilization by elephants and feeding response of elephants to new woody species re‐growth; a cycle that would define the dynamics of food resources and elephant population within the reserve.  相似文献   

5.
The overabundance of Yellow‐throated Miner (Manorina flavigula) has been shown to negatively affect the abundance and richness of small birds in areas they occupy, leading to homogenization of the avifauna across the fragmented landscape. In this study, we took advantage of a planned management cull to ask the question, does the removal of Yellow‐throated Miner colonies cause an immediate change in avian species richness and abundance? This cull was undertaken around the Bronzewing Flora and Fauna Reserve (north‐western Victoria, Australia) in order to protect a resident population of endangered Black‐eared Miner (M. melanotis) from hybridization. We conducted avian surveys along roadsides surrounding the reserve at Yellow‐throated Miner colonies (= 6), control sites with no miners (= 7), and where colonies were removed (= 3). We found that the cull was followed by only a very modest increase in the species richness and abundance of small birds, with no significant effects on avian assemblage overall. This result contrasts with far more dramatic increases following culls of other species of miner. Sites where miners were removed were not depauperate of other species prior to the cull, which could have been due to a combination of proximity to refuge for small birds in a neighbouring reserve or the low numbers of miners that made up each culled colony. This study highlights that assumed effects of a management action may be highly dependent upon spatial and temporal context.  相似文献   

6.
Historic losses and fragmentation of tallgrass prairie habitat to agriculture and urban development have led to declines in diversity and abundance of plants and birds associated with such habitat. Prescribed burning is a management strategy that has potential for restoring and rejuvenating prairies in fragmented landscapes, and through such restoration, might create habitat for birds dependent upon prairies. To provide improved data for management decision-making regarding the use of prescribed fire in tallgrass prairies, we compared responses of plant and bird communities on five burned and five unburned tallgrass prairie fragments at the DeSoto National Wildlife Refuge, Iowa, USA, from 1995 to 1997. Overall species richness and diversity were unaffected by burning, but individual species of plants and birds were affected by year-treatment interactions, including northern bobwhite (Colinus virginianus) and ring-necked pheasant (Phasianus colchicus), which showed time-delayed increases in density on burned sites. Analyses of species/area relationships indicated that, collectively, many small sites did make significant contributions to plant biodiversity at landscape levels, supporting the overall conservation value of prairie fragments. In contrast, most birds species were present on larger sites. Thus, higher biodiversity in bird communities which contain area-sensitive species might require larger sites able to support larger, more stable populations, greater habitat heterogeneity, and greater opportunity for niche separation.  相似文献   

7.
Although it is clear that the farmlands neighbouring fragmented forests are utilized by some forest birds, it is not clear how birds in general respond to farmland habitat mosaic. An effort was made to determine how bird density and foraging assemblages were influenced by farm structural characteristics and distance from forest edge. Thirty farms up to a distance of 12 km around Kakamega forest in western Kenya were studied. Farm structure entailed size, hedge volume, habitat heterogeneity, woody plant density, plant diversity and crop cover. Birds were surveyed using line transects and DISTANCE analyses and classified into six feeding guilds and three habitat associations. Size of farms increased away from the forest, as woody plant density, plant diversity, indigenous trees and subsistence crop cover declined. The most important farm structure variable was hedge volume, which enhanced bird species richness, richness of shrub‐land bird species and insectivorous bird density (R = 0.58, P < 0.01). Bird density increased with tree density while indigenous trees were suitable for insectivores and nectarivores. There were very few forest bird encounters. Agricultural practices incorporating maintenance of hedges and sound selection of agroforestry trees can enhance conservation of birds on farmland, though, not significantly for forest species.  相似文献   

8.
We assessed the relationship between habitat heterogeneity and bird species richness and composition within wetlands of the floodplain of the Middle Paraná River, Argentina. Given the high habitat heterogeneity in these wetland systems, we sought to determine whether (i) there was a positive relationship between bird species richness and habitat heterogeneity; (ii) whether bird species richness was associated with certain types of individual habitat types; (iii) whether there was a pattern of species nestedness and turnover between sites as a function of habitat heterogeneity and composition, respectively; and (iv) whether individual species exhibited associations with habitat heterogeneity. Point counts were used to survey birds at 60 sites. We estimated the area of eight habitat types found within a 200‐m radius from the centre of each site and calculated number and Pielou's evenness of habitat types. These indices, together with area proportion of each habitat type, were used as explanatory factors of bird species richness in linear regression models. Habitat heterogeneity per se rather than area of individual habitat types was a more important predictor of species richness in these fluvial wetlands. Sites with more habitat types supported more bird species. Results showed that individual bird species were associated with different habitat types and, therefore, sites that contained more habitat types contained more species. Number of habitat types accounted for species nestedness between sites whereas composition of habitat types accounted for species turnover between sites. Results suggest that selection of heterogeneous sites by individual species could help explain the positive heterogeneity–species richness relationship. Our findings highlight the importance of habitat heterogeneity per se resulting from flood disturbances in maintaining bird richness in fluvial systems.  相似文献   

9.
We explored how a woody plant invader affected riparian bird assemblages. We surveyed 15 200‐m‐long transects in riparian zones in a much‐changed landscape of eastern Victoria, Australia. Abundance, species‐richness, foraging‐guild richness and composition of birds were compared in transects in three habitat types: (i) riparian zones dominated by the invasive willow Salix × rubens; (ii) riparian zones lined with native woody species; and (iii) riparian zones cleared of almost all woody vegetation. We also measured abundance and richness of arthropods and habitat structure to explore further the effects of food resources and habitat on the avifauna. We observed 67 bird species from 14 foraging guilds. Native riparian transects had more birds, bird species and foraging guilds than willow‐invaded or cleared transects. Habitat complexity increased from cleared to willow‐invaded to native riparian transects, as did abundance of native and woodland‐dependent birds. Native shrub and trees species had more foliage and branch‐associated arthropods than did willows, consistent with a greater abundance and variety of foraging guilds of birds dependent on this resource. Willow spread into cleared areas is unlikely to facilitate greatly native bird abundance and diversity even though habitat complexity is increased. Willow invasion into the native riparian zone, by decreasing food resources and altering habitat, is likely to reduce native bird biodiversity and further disrupt connectivity of the riparian zone.  相似文献   

10.
Summary The establishment of direct seeded revegetation is well researched. However, there is little understanding of whether revegetation simplifies with age and loses many of the short‐lived understorey shrub species that provide critical resources for birds and other fauna, or regenerates sufficiently to be self‐sustaining. We sought to address this by investigating the change in structure and composition of 33 direct seeded sites established by Greening Australia between 1990 and 1996 in the Southern Tablelands of NSW. Transects were used to collect data describing the abundance and richness of woody plants in 1998 and 2008, and the abundance of woody plant regeneration in 2008. Our analysis showed the predicted number of live stems per metre declined exponentially from 5.8 stems/m (~17 000 stems/ha) at age 1.5 years to 1.5 stems/m (~4500 stems/ha) at age 17.5 years. Predicted woody plant species richness also declined with age, with a linear relationship. The number of species in the seed mix affected predicted woody plant species richness. However, large increases in seed mix richness produced relatively small increases in predicted species richness. Regeneration (new stems) was present at high levels (>100 stems/ha); however, 82% of regeneration appeared to originate from delayed germination of sown seed rather than seed from established plants (recruitment). The predicted abundance of new stems (delayed germination and recruitment) declined with age, and for a given age increased with row width. Young stands (11.5 years), seeded with wide rows (4 m), had approximately six times the new stems of similar aged stands seeded with narrow rows (2 m). Our results indicate direct seeded stands simplify with age, becoming less dense and containing fewer species. Maintaining a diversity of shrub species in direct seeded sites may therefore require ongoing disturbances (scarifying, scalping, fire, thinning) of established sites and changes to establishment techniques for new sites. We suggest further research to establish the status of soil seed banks in direct seeded sites, testing different forms of disturbances to trigger regeneration in older revegetation sites and establishing new sites using wide rather than narrow rows and seed mixes enriched with species from genera other than Eucalyptus or Acacia.  相似文献   

11.
This paper incorporates the indigenous ecological knowledge (IEK) of the Maasai pastoralists and ecological methods to assess effects of grazing and cropping on rangeland biodiversity at macro‐ and micro‐landscape scales in northern Tanzania. The joint surveys with pastoralists identified indicator plant species and their associations with micro‐landscapes and livestock grazing suitability (i.e. for cattle and small ruminant grazing), while traditional calf‐pasture reserves (alalili pl. alalilia) were evaluated for preservation of rangeland biodiversity. The macro‐landscapes comprising the cool high plateau (osupuko pl. isipuki) and montane forest highland (endim) were included in the survey. At micro‐landscape scales, the osupuko was classified into uplands (orkung'u), slopes (andamata) and dry valley bottomlands (ayarata). The micro‐landscapes were assessed in terms of herbaceous plant species and woody species richness and risks of soil erosion. Biodiversity varied at both the macro‐ and micro‐landscape scales and in accordance with the land‐use types. Greater plant species diversity and less erosion risks were found in the pastoral landscapes than in the agro‐pastoral landscapes. The calf‐grazing pastures had greater herbaceous species richness than the non‐calf pastures, which in turn had more woody species. The study concludes that the indigenous systems of landscape classification provides a valuable basis for assessing rangeland biodiversity, which ecologists should incorporate into ecological surveys of the rangelands in East Africa in the future.  相似文献   

12.
Abstract The response of grasslands to disturbance varies with the nature of the disturbance and the productivity of the landscape. In highly productive grasslands, competitive exclusion often results in decreased species richness and grazing may allow more species to coexist. Once widespread, grasslands dominated by Dichanthium sericeum (Queensland bluegrass) and Astrebla spp. (Mitchell grass) occur on fertile plains but have been reduced in extent by cultivation. We tested the effects of exclusion of livestock grazing on these grasslands by comparing the floristic composition of sites in a nature reserve with an adjacent stock reserve. In addition, sites that had been cultivated within the nature reserve were compared with those where grazing but no cultivation had occurred. To partition the effects of temporal variation from spatial variation we sampled sites in three different years (1998, 2002 and 2004). Some 194 taxa were recorded at the nature reserve and surrounding stock routes. Sampling time, the occurrence of past cultivation and livestock grazing all influenced species composition. Species richness varied greatly between sampling periods relating to highly variable rainfall and water availability on heavy clay soils. Native species richness was significantly lower at previously cultivated sites (13–22 years after cultivation), but was not significantly influenced by grazing exclusion. After 8 years it appears that reintroducing disturbance in the form of livestock grazing is not necessary to maintain plant species richness in the reserve. The highly variable climate (e.g. droughts) probably plays an important role in the coexistence of species by negating competitive exclusion and allowing interstitial species to persist.  相似文献   

13.
Henri Laurie  Edith Perrier 《Oikos》2011,120(7):966-978
We report a novel pattern in species richness, complementary to the well‐known species–area relationship. We show that, as sample area increases, the variation in relative richness decreases among otherwise comparable spatial units. This pattern holds for southern African birds, French birds, Cape Proteaceae and the trees of Barro Colorado Island. We propose a scale‐free method for quantifying this pattern by measuring the multifractal intensity of species richness, which is the multi‐scale tendency of adjacent patches with the same area to differ in richness. By this measure, spatial variability is strongest for Cape Proteaceae and weakest for Barro Colorado Island trees. Our results have implications for area‐dependent estimates of species‐richness, for example in reserve planning and in simulation‐based studies. They imply that such estimates are most accurate for large areas, and will be subject to substantial uncertainty when the multifractal intensity is high and the area is small. For comparative purposes, multifractal intensity may be used as a supplement or as an alternative to mean richness, as well as for other ecological densities, such as biomass distribution and local abundance.  相似文献   

14.
Combined studies of the communities and interaction networks of bird and insect pollinators are rare, especially along environmental gradients. Here, we determined how disturbance by fire and variation in sugar resources shape pollinator communities and interactions between plants and their pollinating insects and birds. We recorded insect and bird visits to 21 Protea species across 21 study sites and for 2 years in Fynbos ecosystems in the Western Cape, South Africa. We recorded morphological traits of all pollinator species (41 insect and nine bird species). For each site, we obtained estimates of the time since the last fire (range: 2–25 calendar years) and the Protea nectar sugar amount per hectare (range: 74–62 000 g/ha). We tested how post-fire age and sugar amount influence the total interaction frequency, species richness and functional diversity of pollinator communities, as well as pollinator specialization (the effective number of plant partners) and potential pollination services (pollination service index) of insects and birds. We found little variation in the total interaction frequency, species richness and functional diversity of insect and bird pollinator communities, but insect species richness increased with post-fire age. Pollinator specialization and potential pollination services of insects and birds varied differently along the environmental gradients. Bird pollinators visited fewer Protea species at sites with high sugar amount, while there was no such trend for insects. Potential pollination services of insect pollinators to Protea species decreased with increasing post-fire age and resource amounts, whereas potential pollination services of birds remained constant along the environmental gradients. Despite little changes in pollinator communities, our analyses reveal that insect and bird pollinators differ in their specialization on Protea species and show distinct responses to disturbance and resource gradients. Our comparative study of bird and insect pollinators demonstrates that birds may be able to provide more stable pollination services than insects.  相似文献   

15.
Aim There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines. Location Continental Spain. Methods We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species‐specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Results Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low‐medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients. Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high‐density and homogeneous stands, while enrichment planting would be desirable in mesic and medium‐density planted forests.  相似文献   

16.
Aim To test relationships between the richness and composition of vascular plants and birds and attributes of habitat fragments using a model land‐bridge island system, and to investigate whether the effects of fragmentation differ depending on species natural history traits. Location Thousand Island Lake, China. Methods We compiled presence/absence data of vascular plant and bird species through exhaustive surveys of 41 islands. Plant species were assigned to two categories: shade‐intolerant and shade‐tolerant species; bird species were assigned to three categories: edge, interior, and generalist species. We analysed the relationships between island attributes (area, isolation, elevation, shape complexity, and perimeter to area ratio) and species richness using generalized linear models (GLMs). We also investigated patterns of composition in relation to island attributes using ordination (redundancy analysis). Results We found that island area explained a high degree of variation in the species richness of all species groups. The slope of the species–area relationship (z) was 0.16 for all plant species and 0.11 for all bird species. The lowest z‐value was for generalist birds (0.04). The species richness of the three plant species groups was associated with island area per se, while that of all, generalist, and interior birds was explained mainly by elevation, and that of edge bird species was associated primarily with island shape. Patterns of species composition were most strongly related to elevation, island shape complexity, and perimeter to area ratio rather than to island area per se. Species richness had no significant relationship with isolation, but species composition did. We also found differential responses among the species groups to changes in island attributes. Main conclusions Within the Thousand Island Lake system, the effects of fragmentation on both bird and plant species appear to be scale‐dependent and taxon‐specific. The number of plant species occurring on an island is strongly correlated with island area, and the richness of birds and the species composition of plants and birds are associated with variables related to habitat heterogeneity. We conclude that the effects of fragmentation on species diversity and composition depend not only on the degree of habitat loss but also on the specific patterns of habitat fragmentation.  相似文献   

17.
It is widely believed that functional diversity contributes to the stability of ecosystems. Indeed, greater redundancy among species within functional groups and greater complementarity among functional groups within communities should increase the resistance and resilience of ecosystems. In the present study, we tested for functional group complementarity by examining how the loss of specific functional groups may alter the role that other groups play in ecosystem functions. We removed different functional groups, one at a time, from the understory of three maple-dominated forests in southern Québec (Canada) and followed the understory response over a 2-year period. The experimental design included a control and five removal treatments. Five functional groups were defined: spring-flowering ephemeral species; spring-flowering persistent species; summer-flowering species; fern species; and seedlings and juveniles of woody species. Richness, cover, soil pH and organic matter content were determined after two years of removal. The results of our experiment revealed that richness was significantly lower than what we expected when spring-flowering persistent species or seedlings and juveniles of woody species were removed, suggesting not only direct but also indirect positive effects of both of these groups on understory richness (mostly through effects on summer-flowering species and fern species). Removal of the seedlings and juveniles of woody species and, to a lesser extent, of spring-flowering persistent species and of fern species lead to a decrease in the cover of summer-flowering species, implying a positive effect of the former groups on the latter. The cover–richness relationship in the control and in each one of the five removal treatments was positive and well fitted by a linear regression. Yet, the slope of the relationship differed among treatments, but not between the control and any one of the removal treatments (pair-wise comparisons). Our results suggest that the different functional groups are complementary and that positive interactions predominate over negative ones. Contrary to common belief, understory plants can respond quite rapidly to changes in community functional composition. Although we have not investigated the specific mechanisms responsible for the short-term responses reported here, we suggest that complex intergroup interactions may favour functional diversity and enhance ecosystem functions.  相似文献   

18.
Despite the diversity of trees in bottomland forests, restoration on bottomland sites is often initiated by planting only a few species of slow‐growing, hard mast–producing trees. Although successful at establishing trees, these young forests are slow to develop vertical structure, which is a key predictor of forest bird colonization. Furthermore, when natural seed sources are few, restored sites may be depauperate in woody species. To increase richness of woody species, maximum tree height, and total stem density, I supplemented traditional plantings on each of 40 bottomland restoration sites by planting 96 Eastern cottonwood (Populus deltoides) and American sycamore (Platanus occidentalis) in eight clusters of 12 trees. First‐year survival of cottonwood stem cuttings (25%) and sycamore seedlings (47%) was poor, but survival increased when afforded protection from competition with weeds. After five growing seasons, 165 of these 320 supplemental tree clusters had at least one surviving tree. Vegetation surrounding surviving clusters of supplemental trees harbored a greater number of woody species, increased stem density, and greater maximum tree height than was found on paired restoration sites without supplemental trees. These increases were primarily accounted for by the supplemental trees.  相似文献   

19.
Ants are widely used as bioindicators in Australian land assessment and monitoring programs, particularly in relation to ecosystem restoration following mining. Little is known, however, about the relationship between ant community development and key ecological processes such as nutrient cycling. We have examined the relationship between ant species richness and soil microbial biomass at 17 sites subject to disturbance by mining in the Kakadu region of Australia's Northern Territory. The number of ant species recorded ranged from 7 at an unvegetated site undergoing restoration to 43 at a site that was undisturbed except for edge effects. Soil microbial biomass ranged from 19.3 to 134.3 μgC/g. Ant species richness was positively correlated with soil microbial biomass (r= 0.638), more so than was plant species richness (r= 0.342 for total plant species, r= 0.499 for woody species only). Our findings demonstrate a correlation between aboveground ant activity and belowground decomposition processes at disturbed sites, thereby providing support for the use of ants as indicators of restoration success following disturbance. Interestingly, when a range of undisturbed sites in the region was considered, a negative rather than positive relationship between ant richness and soil microbial biomass was found. This illustrates the importance of distinguishing between variation within a habitat due to disturbance and variation across different habitats when searching for indicators of ecological change.  相似文献   

20.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号