首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype. Recently, nuclear localization of HSPG was shown to increase in corneal stromal fibroblasts plated on fibronectin (FN), an extracellular matrix protein whose appearance in the corneal stroma correlates with injury. One possible role for the nuclear localization of HSPG is to function as a shuttle for the nuclear transport of heparin-binding growth factors, such as basic fibroblast growth factor (FGF-2). Once in the nucleus, these growth factors might directly modulate cellular activities. To investigate this hypothesis, cells were treated with (125)I-labelled FGF-2 under various conditions and fractionated. Our results show that nuclear localization of FGF-2 was increased in cells plated on FN compared to those on collagen type I (CO). Interestingly, FGF-2-stimulated proliferation was increased in cells plated on FN compared to CO and this effect was absent in the presence of heparinase III. Furthermore, pre-treatment with heparinase III decreased nuclear FGF-2, and CHO cells defective in the ability to properly synthesize heparan sulfate chains showed reduced nuclear FGF-2 indicating that the heparan sulfate chains of HSPG are critical for this process. HSPG signaling, particularly through the cytoplasmic tails of syndecans, was investigated as a potential mechanism for the nuclear localization of FGF-2. Treatment with phorbol 12-myristate-13-acetate (PMA), under conditions that caused downregulation of protein kinase Calpha (PKCalpha), decreased nuclear FGF-2. Using pharmacological inhibitors of specific PKC isozymes, we elucidated a potential mode of regulation whereby PKCalpha mediates the nuclear localization of FGF-2 and PKCdelta inhibits it. Our studies suggest a novel mechanism in which FGF-2 translocates to the nucleus in response to injury.  相似文献   

2.
Fibroblast growth factor receptors (FGFRs) are a family of transmembrane tyrosine kinases involved in signaling via interactions with the family of fibroblast growth factors. Alternative splicing of the juxtamembrane region of FGFR1-3 leads to the inclusion or exclusion of two amino acids, valine and threonine, the VT site. The presence or absence of VT (VT+ or VT-, respectively) affects the signaling potential of the receptor. The VT+ receptor isoform is required for Erk2 phosphorylation, a component of the mitogen-activated protein kinase signaling pathway. FRS2 is an adaptor protein that links FGFRs to the mitogen-activated protein kinase signaling pathway. FRS2 interacts with a region of the juxtamembrane domain of FGFR1 that includes the alternatively spliced VT site. We investigated the interaction of FRS2 with murine Fgfr1 juxtamembrane domain. We showed the alternatively spliced VT motif, at the juxtamembrane domain of Fgfr1 is required for FRS2 interaction with Fgfr1. Activation of signaling pathways from FRS2 is likely to be regulated by controlling the Fgfr1/FRS2 interaction through alternative splicing of the VT motif of Fgfr1.  相似文献   

3.
Although it is well established that epidermal growth factor receptors (EGFRs) are asymmetrically expressed at the basolateral plasma membrane in polarized epithelial cells, how this process is regulated is not known. The purpose of this study was to address the mechanism of directed EGFR basolateral sorting using the Madin-Darby canine kidney (MDCK) cell model. The first set of experiments established sorting patterns for endogenous canine EGFRs. The polarity of the canine EGFR was not quantitatively affected by differences in electrical resistance exhibited by the MDCK I and MDCK II cell strains. In both cases, greater than 90% of total surface EGFRs was localized to the basolateral surface. Canine EGFRs sort directly to the basolateral membrane from the trans-Golgi network with a halftime of approximately 45 min and have an approximate t1/2 of 12.5 h once reaching the basolateral surface. Human holoreceptors expressed in stably transfected MDCK cells also localize to the basolateral membrane with similar efficiency. To identify EGFR sequences necessary for basolateral sorting, MDCK cells were transfected with cDNAs coding for cytoplasmically truncated human receptor proteins. Human EGFRs truncated at Arg-651 were localized predominantly at the apical surface of filter-grown cells, whereas receptors truncated at Leu-723 were predominantly basolateral. These results suggest that the cytoplasmic juxtamembrane domain contains a positive basolateral sorting determinant. Moreover, the EGFR ectodomain or transmembrane domain may possess a cryptic sequence that specifically interacts with the apical sorting machinery once the dominant basolateral sorting signal is removed. Further elucidation of the precise loacation of these signals will enhance our basic understanding of regulated plasma membrane sorting, as well as the functional consequences of inappropriate EGFR expression associated with certain pathophysiologic and malignant states. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

5.
Ror1 and Ror2 are orphan receptor tyrosine kinases that are most closely related to MuSK and the Trk family of neurotrophin receptors. We report the results of an extensive in situ hybridisation survey of the expression of these genes during mouse development. Expression of Ror1 and Ror2 differs markedly at early stages (E8.5--E9.5). At these times, Ror2 is expressed much more widely than Ror1, expression of which is largely restricted to head mesenchyme. At later stages of development (E12.5--E14.5), Ror1 expression expands and Ror2 expression becomes more restricted than at earlier times, although expression of Ror1 continues to be more restricted than that of Ror2. These changes result in overlapping expression domains but with major differences remaining. In many cases Ror1 is expressed in a sub-set of Ror2-expressing tissues; in others, there is complementary expression of Ror1 and Ror2. Ror1 and Ror2 are both expressed in derivatives of all three germ layers and in most organ systems, including the nervous, circulatory, respiratory, digestive, urogenital and skeletal systems. Conspicuous themes are the expression in major sense organs, and in neural crest and its derivatives.  相似文献   

6.
The receptor tyrosine kinase DDR1 has been implicated in multiple human cancers and fibrosis and is targeted by the leukemia drug Gleevec. This suggests that DDR1 might be a new therapeutic target. However, further insight into the DDR1 signaling pathway is required in order to support its further development. Here, we investigated DDR1 proximal signaling by the analysis of protein-protein interactions using proteomic approaches. All known interactors of DDR1 were identified and localized to specific phosphotyrosine residues on the receptor. In addition, we identified numerous signaling proteins as new putative phosphotyrosine mediated interactors including RasGAP, SHIP1, SHIP2, STATs, PI3K and the SRC family kinases. Most of the new proteins contain SH2 and PTB domains and for all interactors we could directly point the site of interaction to specific phosphotyrosine residues on the receptor. The identified proteins have roles in the early steps of the signaling cascade, propagating the signal from the DDR1 receptor into the cell. The map of phosphotyrosine mediated interactors of DDR1 created in this study will serve as a starting point for functional investigations which will enhance our knowledge on the role of the DDR1 receptor in health and disease. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

7.
The receptor tyrosine kinase Ror2 plays important roles in developmental morphogenesis. It has recently been shown that Ror2 mediates Wnt5a-induced noncanonical Wnt signaling by activating the Wnt-JNK pathway and inhibiting the beta-catenin-TCF pathway. However, the function of Ror2 in noncanonical Wnt signaling leading to cell migration is largely unknown. We show, using genetically different or manipulated cultured cells, that Ror2 is critical for Wnt5a-induced, but not Wnt3a-induced, cell migration. Ror2-mediated cell migration requires the extracellular cysteine-rich domain (CRD), which is the binding site for Wnt5a, and the cytoplasmic proline-rich domain (PRD) of Ror2. Furthermore, Ror2 can mediate filopodia formation via actin reorganization, irrespective of Wnt5a, and this Ror2-mediated filopodia formation requires the actin-binding protein filamin A, which associates with the PRD of Ror2. Intriguingly, disruption of filopodia formation by suppressing the expression of either Ror2 or filamin A inhibits Wnt5a-induced cell migration, indicating that Ror2-mediated filopodia formation is essential for Wnt5a-induced cell migration.  相似文献   

8.
Calcium-dependent protein kinases (CDPKs), the most abundant serine/threonine kinases in plants, are found in various subcellular localizations, which suggests that this family of kinases may be involved in multiple signal transduction pathways. A complete analysis to try to understand the molecular basis of the presence of CDPKs in various localizations in the cell has not been accomplished yet. It has been suggested that myristoylation may be responsible for membrane association of CDPKs. In this study, we used a rice CDPK, OSCPK2, which has a consensus sequence for myristoylation at the N-terminus, to address this question. We expressed wild-type OSCPK2 and various mutants in different heterologous systems to investigate the factors that affect its membrane association. The results show that OSCPK2 is myristoylated and palmitoylated and targeted to the membrane fraction. Both modifications are required, myristoylation being essential for membrane localization and palmitoylation for its full association. The fact that palmitoylation is a reversible modification may provide a mechanism for regulation of the subcellular localization. OSCPK2 is the first CDPK shown to be targeted to membranes by an src homology domain 4 (SH4) located at the N-terminus of the molecule.  相似文献   

9.
10.
N-Methyl-d-aspartate (NMDA) receptors play a critical role in the brain stimulating synaptic plasticity and mediating neurodegeneration; a neuroprotective role has also been described, but its molecular mechanisms in hippocampus are under study. Here, we report that in primary cultures of rat hippocampal neurons exposure to low micromolar NMDA concentrations are neuroprotective against excitotoxic insults, while high micromolar NMDA concentrations provoke neuronal death. Molecular analysis reveals that a toxic concentration of NMDA induced a transient phosphorylation of cAMP-response element-binding protein (pCREB) in 2 min that rapidly decreased below basal levels. In contrast, a nontoxic NMDA concentration gave up to longer (20 min) rise of pCREB, suggesting that neuroprotection could be associated to a relatively prolonged presence of pCREB in the neurons. In support of this tenet, rolipram, an inhibitor of phosphodiesterase IV that increases the levels of cAMP and pCREB, protected against NMDA-induced neuronal death. Similar results were obtained with dibutyrate-cAMP (a cAMP analogue with membrane permeability) that also abrogated NMDA excitotoxicity. Conversely, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89), an inhibitor of protein kinase A (PKA), that prevents the formation of pCREB induced by nontoxic NMDA concentrations, reverted the neuroprotection achieved by preincubation of low micromolar NMDA concentrations. These results substantiate the notion that induction of pCREB via PKA plays an important role in NMDA-mediated neuroprotection.  相似文献   

11.
In mammals, the Ror-family receptor tyrosine kinases consist of two structurally related proteins, Ror1 and Ror2, characterized by the extracellular Frizzled-like cysteine-rich domain and membrane proximal kringle domains. As an attempt to gain insights into their roles in mouse development, expression patterns of Ror1 and Ror2 during early embryogenesis were examined and compared. Interestingly, at early stages, Ror1 and Ror2 exhibit similar expression patterns in the developing face, including the frontonasal process and pharyngeal arches, which are derived from cephalic neural crest cells. On the other hand, they exhibit different expression patterns in the developing limbs and brain, where the expression of Ror2 was detected broadly compared with that of Ror1. At a later stage, both genes are expressed in a similar fashion in the developing heart and lung, yet in a distinct manner in the brain and eye.  相似文献   

12.
Mutations in the receptor tyrosine kinase Ror2 account for Brachydactyly type B and Robinow Syndrome. We have identified two novel factors interacting with the Ror2 intracellular domain. TAK1 (TGF-beta activated kinase 1), a MAP3K, interacts with Ror2 and phosphorylates its intracellular carboxyterminal serine/thronine/proline-rich (STP) domain. This TAK1-dependent phosphorylation of Ror2 induces phosphorylation of tyrosine-residues including a MAPK-like TGY-motif. The TAK1-dependent phosphorylation is enhanced by a second cytosolic factor, PRTB, which interacts with Ror2 and with TAK1 as well. The TAK1-dependent Tyr-phosphorylation of Ror2 is not mediated by the Ror2 tyrosine kinase domain and seems predominantly triggered by cytosolic kinases. Wnt-ligand binding differentially controls the Ror2/TAK1 interaction. Wnt1-binding displaces TAK1 from Ror2 while Wnt3a and Wnt5a are unable to do so thus modifying TAK1's capacity to cause phosphorylation of Ror2. Ror2 seems to act as a Wnt co-receptor enhancing Wnt-dependent canonical pathways while Tyr- and Ser/Thr-phosphorylation of Ror2 negatively controls the efficiency of these pathways. We propose that the level of the Wnt-ligand-regulated phosphorylation by cytosolic factors determines whether Ror2 acts as a stimulator or as an inhibitor of canonical Wnt-signalling.  相似文献   

13.
14.
Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification.  相似文献   

15.
Recent studies highlight the existence of a nuclear lipid metabolism related to cellular proliferation. However, the importance of nuclear phosphatidylcholine (PC) metabolism is poorly understood. Therefore, we were interested in nuclear PC as a source of second messengers and, particularly, nuclear localization of PC-specific phospholipase D (PLD). In the present study we have identified the nuclear localization sequence (NLS) of PLD1 whose mutation abolished its nuclear import. Recently, we reported that caspase-mediated cleavage of PLD1 generates the N-terminal fragment (NF-PLD1) and C-terminal fragment (CF-PLD1). Here we show that CF-PLD1 but not NF-PLD1, is exclusively imported into the nucleus via its functional NLS, whereas only some portions of intact PLD1 were localized into the nucleus. The NLS of intact PLD1 or CF-PLD1 is required for interaction with importin-β, which is known to mediate nuclear import. The amount of intact PLD1 or CF-PLD1 translocated into nucleus is correlated with its binding affinity with importin-β. Ultimately, nuclear localization of intact PLD1 but not CF-PLD1 mediates the activation of nuclear protein kinase Cα and extracellular signal-regulated kinase signaling pathways. Taken together, we propose that nuclear localization of PLD1 via the NLS and its interaction with importin-β may provide new insights on the functional role of nuclear PLD1 signaling.  相似文献   

16.
Mammalian casein kinase 1delta (CK1delta) is a homologue of the S. cerevisiae Hrr25p protein kinase. Hrr25p is involved in regulating diverse events including vesicular trafficking, gene expression, DNA repair, and chromosome segregation. In contrast to Hrr25p, little is known about the function, regulation, or subcellular localization of CK1delta. In the present study, we show that CK1delta in mammalian cells is mainly cytoplasmic and enriched within the Golgi and/or ER-Golgi transport vesicles, consistent with a role in vesicular trafficking. Transient expression of green fluorescent protein (GFP)- or FLAG peptide-tagged CK1delta showed localization similar to that of the endogenous CK1delta. GFP-CK1delta was also enriched at the centrosomes in interphase cells. Strikingly, two inactive mutant CK1delta proteins (K38M and T176I) showed almost exclusive nuclear staining, suggesting that protein kinase activity is required for normal localization of CK1delta and prevention of nuclear accumulation. The nuclear export inhibitor leptomycin B promoted nuclear enrichment of CK1delta indicating that nuclear localization of CK1delta occurs physiologically. Both endogenous CK1delta and GFP-CK1delta are enriched on the spindle poles in mitotic cells, consistent with a role in regulating spindle formation. Localization is a property of the protein kinase domain and is independent of the C-terminal noncatalytic domain. These data are consistent with roles for CK1delta in mammalian cells analogous to those of its yeast counterparts.  相似文献   

17.
CAD is a multifunctional protein that initiates and regulates mammalian de novo pyrimidine biosynthesis. The activation of the pathway required for cell proliferation is a consequence of the phosphorylation of CAD Thr-456 by mitogen-activated protein (MAP) kinase. Although most of the CAD in the cell was cytosolic, cell fractionation and fluorescence microscopy showed that Thr(P)-456 CAD was primarily localized within the nucleus in association with insoluble nuclear substructures, including the nuclear matrix. CAD in resting cells was cytosolic and unphosphorylated. Upon epidermal growth factor stimulation, CAD moved to the nucleus, and Thr-456 was found to be phosphorylated. Mutation of the CAD Thr-456 and inhibitor studies showed that nuclear import is not mediated by MAP kinase phosphorylation. Two fluorescent CAD constructs, NLS-CAD and NES-CAD, were prepared that incorporated strong nuclear import and export signals, respectively. NLS-CAD was exclusively nuclear and extensively phosphorylated. In contrast, NES-CAD was confined to the cytoplasm, and Thr-456 remained unphosphorylated. Although alternative explanations can be envisioned, it is likely that phosphorylation occurs within the nucleus where much of the activated MAP kinase is localized. Trapping CAD in the nucleus had a minimal effect on pyrimidine metabolism. In contrast, when CAD was excluded from the nucleus, the rate of pyrimidine biosynthesis, the nucleotide pools, and the growth rate were reduced by 21, 36, and 60%, respectively. Thus, the nuclear import of CAD appears to promote optimal cell growth. UMP synthase, the bifunctional protein that catalyzes the last two steps in the pathway, was also found in both the cytoplasm and nucleus.  相似文献   

18.
The frizzled (FRZ) module is a novel module type that was first identified in G-protein-coupled receptors of the frizzled and smoothened families and has since been shown to be present in several secreted frizzled-related proteins, in some modular proteases, in collagen XVIII, and in various receptor tyrosine kinases of the Ror family. The FRZ modules constitute the extracellular ligand-binding region of frizzled receptors and are known to mediate signals of WNT family members through these receptors. With an eye toward defining the structure of this important module family, we have expressed the FRZ domain of rat Ror1 receptor tyrosine kinase in Pichia pastoris. By proteolytic digestion and amino acid sequencing the disulfide bonds were found to connect the 10 conserved cysteines in a 1-5, 2-4, 3-8, 6-10, and 7-9 pattern. Circular dichroism and differential scanning calorimetry studies on the recombinant protein indicate that the disulfide-bonded FRZ module corresponds to a single, compact, and remarkably stable folding domain possessing both alpha-helices and beta-strands.  相似文献   

19.
Cui P  Qin B  Liu N  Pan G  Pei D 《Experimental cell research》2004,293(1):154-163
The interaction between phosphatidylserine and its receptor on phagocytic cells plays a critical role in the clearance of apoptotic bodies under normal physiological condition. A specific receptor for phosphatidylserine (PSR) has recently been identified by phage display and shown to mediate phosphatidylserine dependent phagocytosis. Here we show that the protein encoded by the PSR cDNA is localized in the nuclei through multiple nuclear localization signals. First, a fusion between PSR and GFP is localized in the nuclei of transfected cells, suggesting that PSR have intrinsic nuclear localization capability. Indeed, affinity-purified anti-PSR antibodies identified a 47 kDa protein species in cells transfected with untagged PSR and localized this protein in the nuclei by immunofluorescent confocal microscopy. In NIH3T3 cells, which express endogenous PSR mRNA, a similar 47 kDa species was detected and localized in the nuclei. Finally, multiple nuclear localization signals were identified in PSR sequence, each capable of targeting GFP to the nuclei. Together, these results suggest that PSR may serve a dual role both on the cell surface and in the nuclei.  相似文献   

20.
Human exonuclease 1 (hEXO1) is implicated in DNA mismatch repair (MMR) and mutations in hEXO1 may be associated with hereditary nonpolyposis colorectal cancer (HNPCC). Since the subcellular localization of MMR proteins is essential for proper MMR function, we characterized possible nuclear localization signals (NLSs) in hEXO1. Using fluorescent fusion proteins, we show that the sequence 418KRPR421, which exhibit strong homology to other monopartite NLS sequences, is responsible for correct nuclear localization of hEXO1. This NLS sequence is located in a region that is also required for hEXO1 interaction with hMLH1 and we show that defective nuclear localization of hEXO1 mutant proteins could be rescued by hMLH1 or hMSH2. Both hEXO1 and hMLH1 form complexes with the nuclear import factors importin β/α1,3,7 whereas hMSH2 specifically recognizes importin β/α3. Taken together, we infer that hEXO1, hMLH1 and hMSH2 form complexes and are imported to the nucleus together, and that redundant NLS import signals in the proteins may safeguard nuclear import and thereby MMR activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号