首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants’ tolerance to multiple stress conditions.  相似文献   

2.
3.
The alternative oxidase (AOX) of plant mitochondria transfers electrons from the ubiquinione pool to oxygen without energy conservation and prevents the formation of reactive oxygen species (ROS) when the ubiquinone pool is over-reduced. Thus, AOX may be involved in plant acclimation to a number of oxidative stresses. To test this hypothesis, we exposed wild-type (WT) Xanthi tobacco plants as well as Xanthi plants transformed with the Bright Yellow tobacco AOX1a cDNA with enhanced (SN21 and SN29), and decreased (SN10) AOX capacity to an acute ozone (O3) fumigation. As a result of 5 h of O3 exposition (250 nL L(-1)), SN21 and SN29 plants surprisingly showed localized leaf damage, whereas SN10, similarly to WT plants, was undamaged. In keeping with this observation, WT and SN21 plants differed in their response to O3)for the expression profiles of catalase 1 (CAT1), catalase 2 (CAT2), glutathione peroxidase (GPX) and ascorbate peroxidase (APX) genes, and for the activity of these antioxidant enzymes, which were induced in WT. Concomitantly, although ozone induced H2O2 accumulation in WT and in all transgenic lines, only in transgenics with high AOX capacity the H2O2 level in the post-fumigation period was high. The alternative pathway of WT plants was strongly stimulated by O3, whereas in SN21 plants, the respiratory capacity was always high across the treatment. The present results show that, far from exerting a protective role, the overexpression of AOX triggers an increased O3 sensitivity in tobacco plants. We hypothesize that the AOX overexpression results in a decrease of mitochondrial ROS level that in turn alters the defensive mitochondrial to nucleus signalling pathway that activates ROS scavenging systems.  相似文献   

4.
The responses of antioxidant enzymes (AOE) ascorbate peroxidase (APX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) in soluble protein extracts from leaves and roots of tobacco (Nicotiana tabacum L. cv. Samsun NN) plants to the drought stress, salinity and enhanced zinc concentration were investigated. The studied tobacco included wild-type (WT) and transgenic plants (AtCKX2) harbouring the cytokinin oxidase/dehydrogenase gene under control of 35S promoter from Arabidopsis thaliana (AtCKX2). The transgenic plants exhibited highly enhanced CKX activity and decreased contents of cytokinins and abscisic acid in both leaves and roots, altered phenotype, retarded growth, and postponed senescence onset. Under control conditions, the AtCKX2 plants exhibited noticeably higher activity of GR in leaves and APX and SOD in roots. CAT activity in leaves always decreased upon stresses in WT while increased in AtCKX2 plants. On the contrary, the SOD activity was enhanced in WT but declined in AtCKX2 leaves. In roots, the APX activity prevailingly increased in WT while mainly decreased in AtCKX2 in response to the stresses. Both WT and AtCKX2 leaves as well as roots exhibited elevated abscisic acid content and increased CKX activity under all stresses while endogenous CKs and IAA contents were not much affected by stress treatments in either WT or transgenic plants.  相似文献   

5.
In plants, the oxygen generated by photosynthesis can be excited to form reactive oxygen species (ROS) under excessive sunlight. Excess ROS including singlet oxygen (1O2) inhibit the growth, development and photosynthesis of plants. To isolate ROS-resistant crop plants, we used paraquat (PQ), a generator of O2 ·− as a source of screening and mutagen, and obtained two PQ-resistant lines in Pisum sativum, namely R3-1 and R3-2. Both lines showed greater resistance to PQ than their wild type (WT) siblings with respect to germination, root growth, and shoot growth. Biochemical analysis showed differences in these lines, in which ROS-scavenging enzymes undergo changes with a distinguishable increase in Mn-SOD. We further observed that the cytosolic catalases (CATs) in leaves in both lines were shifted in a native-PAGE analysis compared with that of the WT, indicating that the release of bound 1O2 was enhanced. Phenotypic analysis revealed distinguishable differences in leaf development, and in flowering time and position. In addition, R3-1 and R3-2 showed shorter individual internode lengths, dwarf plant height, and stronger branching compared with the WT. These results suggested that PQ-induced ROS-resistant Pisum have the potential pleiotropic effects on flowering time and stem branching, and that ROS including 1O2 plays not only important roles in plant growth and development as a signal transducer, but also appears as a strong inhibitor for crop yield. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Glycosylation of sterols, catalysed by sterol glycosyltransferases (SGTs), improves the sterol solubility, chemical stability and compartmentalization, and helps plants to adapt to environmental changes. The SGTs in medicinal plants are of particular interest for their role in the biosynthesis of pharmacologically active substances. WsSGTL1, a SGT isolated from Withania somnifera, was expressed and functionally characterized in transgenic tobacco plants. Transgenic WsSGTL1-Nt lines showed an adaptive mechanism through demonstrating late germination, stunted growth, yellowish-green leaves and enhanced antioxidant system. The reduced chlorophyll content and chlorophyll fluorescence with decreased photosynthetic parameters were observed in WsSGTL1-Nt plants. These changes could be due to the enhanced glycosylation by WsSGTL1, as no modulation in chlorophyll biogenesis-related genes was observed in transgenic lines as compared to wildtype (WT) plants. Enhanced accumulation of main sterols like, campesterol, stigmasterol and sitosterol in glycosylated form was observed in WsSGTL1-Nt plants. Apart from these, other secondary metabolites related to plant’s antioxidant system along with activities of antioxidant enzymes (SOD, CAT; two to fourfold) were enhanced in WsSGTL1-Nt as compared to WT. WsSGTL1-Nt plants showed significant resistance towards Spodoptera litura (biotic stress) with up to 27 % reduced larval weight as well as salt stress (abiotic stress) with improved survival capacity of leaf discs. The present study demonstrates that higher glycosylation of sterols and enhanced antioxidant system caused by expression of WsSGTL1 gene confers specific functions in plants to adapt under different environmental challenges.  相似文献   

7.
8.
The c-ros oncogene 1 (ROS1) has proven to be an important cancer target for the treatment of various human cancers. The anaplastic lymphoma kinase inhibitor crizotinib has been granted approval for the treatment of patients with ROS1 positive metastatic non-small-cell lung cancer by the Food and Drug Administration on 2016. However, serious resistance due to the secondary mutation of glycine 2032 to arginine (G2032R) was developed in clinical studies. Loratinib (PF-06463922), a macrocyclic analog of crizotinib, showed significantly improved inhibitory activity against wild–type (WT) ROS1 and ROS1G2032R mutant. To provide insights into the inhibition mechanism, molecular dynamics simulations and free energy calculations were carried out for the complexes of loratinib with WT and G2032R mutated ROS1. The apo-ROS1WT and apo-ROS1G2032R systems showed similar RMSF distributions, while ROS1G2032R-loratinib showed significantly higher than that of WT ROS1-loratinib, which revealed that the binding of loratinib to ROS1G2032R significantly interfered the ?uctuation of protein. Calculations of binding free energies indicate that G2032R mutation significantly reduces the binding affinity of loratinib for ROS1, which arose mostly from the increase of conformation entropy and the decrease of solvation energy. Furthermore, detailed per-residue binding free energies highlighted the increased and decreased contributions of some residues in the G2032R mutated systems. The present study revealed the detailed inhibitory mechanism of loratinib as potent WT and G2032R mutated ROS1 inhibitor, which was expected to provide a basis for rational drug design.  相似文献   

9.
Oxidative stress is a major threat for plants exposed to various environmental stresses. Previous studies found that transgenic potato plants expressing both copper zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) (referred to as SSA plants), or nucleoside diphosphate kinase 2 (NDPK2) (SN plants), showed enhanced tolerance to methyl viologen (MV)‐induced oxidative stress and high temperature. This study aimed to develop transgenic plants that were more tolerant of oxidative stress by introducing the NDPK2 gene into SSA potato plants under the control of an oxidative stress‐inducible peroxidase (SWPA2) promoter to create SSAN plants. SSAN leaf discs and whole plants showed enhanced tolerance to MV, as compared to SSA, SN or non‐transgenic (NT) plants. SSAN plants sprayed with 400 µM MV exhibited about 53 and 83% less visible damage than did SSA and SN plants, respectively. The expression levels of the CuZnSOD, APX and NDPK2 genes in SSAN plants following MV treatment correlated well with MV tolerance. SOD, APX, NDPK and catalase antioxidant enzyme activities were also increased in MV‐treated SSAN plants. In addition, SSAN plants were more tolerant to high temperature stress at 42°C, exhibiting a 6.2% reduction in photosynthetic activity as compared to plants grown at 25°C. In contrast, the photosynthetic activities of SN and SSA plants decreased by 50 and 18%, respectively. These results indicate that the simultaneous overexpression of CuZnSOD, APX and NDPK2 is more effective than single or double transgene expression for developing plants with enhanced tolerance to various environmental stresses.  相似文献   

10.
Dietary trans-resveratrol (RES) is rapidly metabolized into sulfated and glucuronated conjugates in humans. This study focused on the in vitro determination of the antioxidant capacity of RES and its main physiological metabolites and on its relevance in vivo. In vitro, RES, RES-3-O-sulfate (R3S) and 3-O-glucuronide (R3G) showed antioxidant activities at a concentration of 1 mM when compared to Trolox using an assay in which the antioxidant inhibits iron-induced linoleic acid oxidation: 0.87±0.08 mM Trolox equivalents (TE) for RES, 0.52±0.01 mM TE for R3S and 0.36±0.02 mM TE for R3G. At a concentration of 1 μM, compounds promoted linoleic acid peroxidation (RES −0.30±0.09 mM TE, R3S −0.48±0.05 mM TE and R3G −0.57±0.07 mM TE). To elucidate whether these effects were reflected in vivo, total antioxidant capacity, reactive oxygen species (ROS), conjugated fatty acid dienes (CD), superoxide dismutase (SOD) and catalase (CAT) activities were determined in human plasma and erythrocytes over 24 h, after oral intake of either 0.05 g RES as piceid or 5 g RES. Oral administration of RES did not show an impact on total antioxidant capacity, ROS or CD. However, enzymatic activities of ROS scavenging SOD and CAT were significantly lower after high-dose compared to low-dose administration of RES (P<.03 and P<.01). In conclusion, in healthy subjects, neither 0.05 g nor 5 g RES changed blood oxidative state, although our in vitro data point to a prooxidative activity of low concentrations of RES and its metabolites, which could be important in vivo for individuals with compromised antioxidant defense capacity.  相似文献   

11.
12.

Background and aims

Cadmium (Cd) could activate activity of mitogen-activated protein kinase MPK6 in plants. In this study, we investigated the role of MPK6 in mediating Cd toxicity in plants.

Methods

The wild type Arabidopsis plants (WT) and the mpk6-2 mutants were subjected either 0 (Control) or 10 μM Cd treatment. Kinase activity of MPK6, nitric oxide (NO) level, Cd concentration, and oxidative stress were measured.

Results

In WT plants, Cd exposure rapidly stimulated kinase activity of MPK6. However, upon Cd exposure, mpk6-2 showed better growth than the WT. Although Cd-induced production of NO in roots was greater in WT than in mpk6-2, there was no difference in Cd concentration between the two plants. Nevertheless, the Cd-induced hydroperoxide burst, lipid peroxidation and loss of membrane integrity, were all more severe in the WT than in mpk6-2. Foliar applications of antioxidant ascorbic acid, vigorously improved the growth of both the WT and mpk6-2 under Cd exposure. Thereby the growth difference between these two plants was minimized.

Conclusions

Mutation of mpk6 enhances Cd tolerance in plants by alleviating oxidative stress, but did not affect cadmium accumulation in plants.  相似文献   

13.
Key message

Over-expression of CAX3 encoding a cation/proton exchanger enhances Cd tolerance by decreasing ROS (Reactive Oxygen Species) through activating anti-oxidative enzymes via elevation of Ca level in Arabidopsis

Abstract

CAXs (cation/proton exchangers) are involved in the sequestration of cations such as Mn, Li, and Cd, as well as Ca, from cytosol into the vacuole using proton gradients. In addition, it has been reported that CAX1, 2 and 4 are involved in Cd tolerance. Interestingly, it has been reported that CAX3 expressions were enhanced by Cd in Cd-tolerant transgenic plants expressing Hb1 (hemoglobin 1) or UBC1 (Ub-conjugating enzyme 1). Therefore, to investigate whether CAX3 plays a role in increasing Cd tolerance, CAX3 of Arabidopsis and tobacco were over-expressed in Arabidopsis thaliana. Compared to control plants, both transgenic plants displayed an increase in Cd tolerance, no change in Cd accumulation, and enhanced Ca levels. In support of these, AtCAX3-Arabidopsis showed no change in expressions of Cd transporters, but reduced expressions of Ca exporters and lower rate of Ca efflux. By contrast, atcax3 knockout Arabidopsis exhibited a reduced Cd tolerance, while the Cd level was not altered. The expression of Δ90-AtCAX3 (deletion of autoinhibitory domain) increased Cd and Ca tolerance in yeast, while AtCAX3 expression did not. Interestingly, less accumulation of ROS (H2O2 and O2?) was observed in CAX3-expressing transgenic plants and was accompanied with higher antioxidant enzyme activities (SOD, CAT, GR). Taken together, CAX3 over-expression may enhance Cd tolerance by decreasing Cd-induced ROS production by activating antioxidant enzymes and by intervening the positive feedback circuit between ROS generation and Cd-induced spikes of cytoplasmic Ca.

  相似文献   

14.
15.
16.
亚硝酸盐胁迫对罗氏沼虾血细胞及其抗氧化酶活力的影响   总被引:2,自引:0,他引:2  
【背景】亚硝酸盐是虾类集约化养殖过程中最常见的毒性污染物之一,研究亚硝酸盐胁迫对罗氏沼虾血细胞的毒性以及抗氧化酶在抗胁迫防御中的作用,能够为罗氏沼虾养殖过程中的亚硝酸盐中毒防治提供理论参考。【方法】以不同浓度(0、1、5和10 mg·L~(-1))的亚硝态氮(NO_2~--N)对罗氏沼虾进行胁迫,于胁迫后的0、6、12、24和48 h取样,应用流式细胞术检测血细胞活性氧(ROS)含量和细胞凋亡率,同时测定血细胞总数(THC)和胞内抗氧化酶活力。【结果】1 mg·L~(-1)NO_2~--N在48 h内对血细胞ROS含量、凋亡率和THC均无显著影响。5 mg·L~(-1)NO_2~--N胁迫24 h,血细胞ROS含量显著上升,THC显著下降,胁迫48 h凋亡率显著提高。10 mg·L~(-1)NO_2~--N胁迫6 h,血细胞ROS含量和凋亡率均显著上升,胁迫12 h THC显著下降。血细胞的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPx)的活力均不同程度地被NO_2~--N胁迫所诱导,CAT活力主要在胁迫前期提高,而GPx活力在胁迫后期提高。【结论与意义】亚硝酸盐存在浓度和时间毒性效应,一定浓度的亚硝酸盐会诱导虾血细胞产生ROS,这些ROS的过量产生诱导了血细胞发生凋亡,继而导致THC下降,这一氧化胁迫过程可能是亚硝酸盐对罗氏沼虾产生细胞毒性的重要机制之一。抗氧化酶活力的诱导表明抗氧化酶在亚硝酸盐胁迫过程中发挥防御作用。  相似文献   

17.
Cytokinin analogue roscovitine exhibits a strong inhibitory effect on cytokinin N-glucosylation, one of the most important pathways of cytokinin inactivation in plants. Roscovitine-resistant mutant. (ror-1) was isolated using T-DNA tagged lines of Arabidopsis thaliana (L.) Heynh in order to find a gene putatively involved in cytokinin N-glucosylation. The amount of cytokinin N-glucosides of trans-zeatin- and isopentenyladenine-type was elevated by 20% in ror-1 mutant compared to WT. The cytokinin oxidase/dehydrogenase activity exhibited a mild elevation in ror-1 compared to WT in basal media. Additionally, ror-1 plants showed slightly enhanced resistance to exogenously supplied aromatic cytokinins (benzyladenine). Incubation with exogenous cytokinin (5 μM BA for 24 h) resulted in significant up-regulation of ROR-1 gene expression in ror-1 mutant. In silico analysis showed that ROR-1 gene encoded for a protein consisting of GRAM (Glycosyltransferases Rab-like GTPase activators and Myotubularins) and C2 domains. Here, we report on the role of ROR-1 gene in metabolism of bioactive cytokinins in the plants.  相似文献   

18.
The present work aimed to investigate the mechanisms of nitric oxide (NO) and reactive oxygen species (ROS) generations and to explore their roles in the regulation of antioxidative responses in the wheat leaves under salinity. Except for an insignificant change of NO content and nitrate reductase (NR) activity due to 50 mM NaCl, NO, hydrogen peroxide, superoxide anion (O2?-), hydroxyl radical (?OH), chlorophyll and malondialdehyde content, as well as activities of nitric oxide synthase, NR, peroxidases (POD), catalase (CAT), and ascorbate peroxidase rose in response to different NaCl concentrations. Meanwhile, leaf superoxide dismutase activity lowered only at 50 mM NaCl. NaCl-stimulatory effects on NO content as well as POD and CAT activities could be partly alleviated by the application of 2-phenyl-4,4,5,5-tetrame-thylimidazoline-3-oxide-1-oxyl (PTIO, NO scavenger), exogenous CAT, or diphenylene iodonium (DPI, NADPH oxidase inhibitor). Native polyacrylamide gel electrophoresis also showed that the amount of POD (especially POD4, POD5, and POD7) and CAT (especially CAT1, CAT2, and CAT3) isozymes increased with increasing salinity but decreased by application of PTIO, CAT, or DPI. Furthermore, histochemical staining showed a similar change of O2?- generation. In addition, the inhibition of diamineoxidase (DAO), polyamine oxidase (PAO), and cell wall-bound POD (cw-POD) activities in NaCl-stressed seedlings seemed to be insensitive to the application of PTIO or DPI. Taken together, salinity-induced NO, H2O2, and O2?- generation influenced each other and played different roles in the regulation of antioxidant enzyme activities in the leaves of wheat seedlings under NaCl treatment.  相似文献   

19.
Recently we reported that the joint expression of cassava Cu/Zn superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) prolonged the shelf life of cassava storage-roots by the stabilization of reactive oxygen species (ROS) homeostasis after harvest. Since oxidative damage is a major feature of plants exposed to environmental stresses, transgenic cassava showing increased expression of the cytosolic MeCu/ZnSOD and the peroxisomal MeCAT1 should have improved resistance against other abiotic stresses. After cold treatment, the transgenic cassava maintained higher SOD and CAT activities and lower malendialdehyde content than those of wild type plants (WT). Detached leaves of transgenic cassava also showed slower transpirational water loss than those of WT. When plants were not watered for 30 d, transgenic lines exhibited a significant increase in water retention ability, accumulated 13% more proline and 12% less malendialdehyde than WT’s, and showed enhanced activity of SOD and CAT. These results imply that manipulation of the antioxidative mechanism allows the development of staple crops with improved tolerance to abiotic stresses.  相似文献   

20.
The extracellular polysaccharide from Rhodella reticulata was separated from the culture medium followed by concentration and ethanol precipitation, and purified by anion exchange chromatography on DEAE-Sepharose Fast Flow. This study compared the free radical-scavenging property and antioxidant activity with various treatments of crude extracellular polysaccharides of R. reticulata. The results showed that both the crude extracellular polysaccharide and deproteinized crude extracellular polysaccharide gave evidence of the free radical scavenging and antioxidant activity in a dose-dependent manner. The crude extracellular polysaccharide exhibited higher free radical scavenging capacity and better antioxidant activity than the various treatments of crude extracellular polysaccharide samples. The superoxide anion radical scavenging ability of various samples was significantly higher compared to standard antioxidant (α-tocopherol). These results indicate that the extracellular polysaccharide of R. reticulata is a potent natural antioxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号