首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic strategy to enhance recombinant protein production is discussed. A small DNA bending protein, Fis, which has been shown to activate rRNA synthesis upon a nutrient upshift, was overexpressed in E. coli strain W3110 carrying vector pUCR1. Overexpression of Fis during exponential growth was shown to activate rrn promoters to different extents. A 5-fold improvement in chloramphenicol acetyltransferase (CAT) production in cultures with elevated Fis level was observed in shake-flask cultivations. A similar improvement in the culture performance was also observed during fed-batch fermentation; the specific CAT activity increased by more than 50% during the fed-batch phase for cultures with elevated Fis expression. In contrast, no increase in specific CAT activity was detected for cultures carrying pUCR2, expressing a frame-shift Fis mutant. Expression of Fis from a complementary vector, pKFIS, restored CAT production from W3110:pUCR2 to approximately the same level as cultures carrying pUCR1, indicating that the enhancement in CAT production was indeed Fis-dependent. The framework presented here suggests that differential activation in recombinant protein production may be achieved with differential Fis overexpression. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 138-144, 1997.  相似文献   

2.
《Process Biochemistry》2010,45(8):1401-1405
Human insulin-like growth factor 1 (hIGF-1) is one kind of growth factor with clinical significance in medicine. The expression of TrxA-hIGF-1 fusion protein was rationally compared in three different Escherichia coli hosts (BL21 (DE3), Rosetta (DE3) and Rosetta-gami (DE3)) with the transformation of plasmid pET32-hIGF-1. The highest productivity of soluble hIGF-1 fusion protein was achieved in E. coli Rosetta-gami (DE3). Moreover, the effects of different expression conditions in this E. coli Rosetta-gami (DE3)/pET32-hIGF-1 host were systematically investigated to improve the expression level of the fusion protein. Under the optimized conditions, a high percent of the target fusion protein (96%) was expressed as soluble form with the volumetric production of soluble fusion protein reaching up to 2.06 g/L. After cell disruption, the soluble fusion protein was separated effectively by affinity chromatography and cleaved by enterokinase, with the concentration of mature hIGF-1 reaching up to 0.42 g/L in the mixture. The present work should be useful for the enhanced production of soluble protein with multiple disulfide bonds in E. coli.  相似文献   

3.
The culture of Escherichia coli for the commercial production of recombinant proteins has increased significantly in recent years. The production of acetate as a byproduct retards cell growth, inhibits protein formation, and diverts carbon from biomass to protein product. Our approach to reducing acetate accumulation was to disable the phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) by deleting the ptsHI operon in the wild-type E. coli strain GJT001. The mutation caused a severe reduction in growth rate and glucose uptake rate in glucose-supplemented M9 minimal medium, which confirmed the mutation, and eliminated acetate accumulation. The mutant strain (TC110) apparently metabolized glucose by a non-PTS mechanism that we are currently investigating, followed by phosphorylation by glucokinase. In complex medium such as 2xLB broth with 2% glucose, TC110 was able to grow quickly and still retained the phenotype of significantly reduced acetate accumulation (9.1+/-6.6 vs. 90.4+/-1.6mM in GJT001, P<0.05). The reduced acetate accumulation resulted in a significant improvement in final OD (23.5+/-0.7 in TC110 vs. 8.0+/-0.1 in GJT001, P<0.05). We tested the strains for the production of model recombinant proteins such as green fluorescent protein (GFP) and beta-galactosidase. TC110 had a 385-fold improvement in final volumetric productivity of GFP over GJT001 in shake flasks with 2xLB broth with 2% glucose. The distribution of GFP fluorescence in the cell population, as determined by flow cytometry, was much broader in GJT001 (coefficient of variation=466+/-35%) than in TC110 (coefficient of variation=55+/-1%). In corn steep liquor medium with 2% glucose, we observed a 28.5-fold improvement in final volumetric production of GFP in TC110 over GJT001. TC110 had a 7.5-fold improvement in final volumetric productivity of beta-galactosidase over GJT001 in 2xLB broth with 2% glucose medium. When tested in a batch bioreactor cultures with 2xLB broth with 2% glucose medium, the volumetric production of GFP by TC110 was 25-fold higher than that of GJT001. In summary, the ptsHI mutant of GJT001 resulted in reduced acetate accumulation, which led to significant improvements in recombinant protein production in batch bioreactors.  相似文献   

4.
We have expressed recombinant RNase P protein from Escherichia coli in high yield. A hexahistidine sequence at the amino terminus allowed protein purification in a single step. Mass spectrometry confirmed the molecular weight of the purified protein and indicated a purity of > 95%. Protein functionality was demonstrated by reconstitution of active holoenzyme.  相似文献   

5.
The complex and integrated nature of both genetic and protein level factors influencing recombinant protein production in Escherichia coli makes it difficult to predict the optimal expression strategy for a given protein. Here, two combinatorial library strategies were evaluated for their capability of tuning recombinant protein production in the cytoplasm of E. coli. Large expression vector libraries were constructed through either conservative (ExLib1) or free (ExLib2) randomization of a seven-amino-acid window strategically located between a degenerated start codon and a sequence encoding a fluorescently tagged target protein. Flow cytometric sorting and analyses of libraries, subpopulations or individual clones were followed by SDS-PAGE, western blotting, mass spectrometry and DNA sequencing analyses. For ExLib1, intracellular accumulation of soluble protein was shown to be affected by codon specific effects at some positions of the common N-terminal extension. Interestingly, for ExLib2 where the same sequence window was randomized via seven consecutive NN(G/T) tri-nucleotide repeats, high product levels (up to 24-fold higher than a reference clone) were associated with a preferential appearance of novel SD-like sequences. Possible mechanisms behind the observed effects are discussed.  相似文献   

6.
In order to examine the structure–activity relationship and the substrate specificity of human d-amino acid oxidase (h.DAO), a single amino acid mutation had been established as proline-219-luecine (P-219-L). The gene encoding mutant h.DAO has been cloned and expressed in Escherichia coli BL21 (DE3). It was observed that the host cell was negatively affected by the expressed mutant h.DAO, resulting in a remarkable decrease in the cell growth and consequently the amount of the produced enzyme. To overcome this problem, we investigated several factors that may affect the cell growth rate and the mutant h.DAO production such as optimization of the glucose concentration as a main carbon source and the yeast extract concentration as a main nitrogen source, optimization of dissolved oxygen (DO%) concentration and the addition of benzyl alcohol (BA, which can artificially induce a strong heat shock response at low temperature), to enhance the production of natively folded soluble fraction of the recombinant protein. These parameters were tested on both shake flask level and fed-batch bioreactor level. The Western blot analysis and the enzyme activity assay indicated the higher level of the mutant expression towards enhancement of the conditions by using our designed approach.The specific activity (which was used as an indicator for the level of the desired protein produced = U/mg protein) and the OD600 nm of the host cells (which was used as an indicator for the cell growth), reached to be 0.061 U/mg protein and 3.44, respectively upon using fed-batch culture system containing the optimized medium composition (15 g/l glucose and 5 g/l yeast extract). While upon using the shake flask level, these values were 0.032 and 1.1, respectively. Enhancement of the cell growth and the enzyme production was noticed after DO% optimization upon using 500 rpm agitation speed and 1.8 v.v.m. (volume volume minute) aeration. The specific activity for the mutant enzyme and the OD600 nm of the host cells reached to be 0.14 U/mg protein and 7.1, respectively. Finally upon using the optimized culture composition (15 g/l glucose and 5 g/l yeast extract), optimized DO% (using 500 rpm agitation speed and 1.8 v.v.m.) and 0.1 mM BA at the fed-batch bioreactor level, the specific activity and the OD600 nm of the host cells increased significantly to be 0.21 U/mg protein and 11.3, respectively at 24 h culture. These results indicate the importance of our approaches to overproducing mutant h.DAO in soluble form in E. coli.  相似文献   

7.
Over the years, several vectors and host strains have been constructed to improve the overexpression of recombinant proteins in Escherichia coli. More recently, attention has focused on the co-expression of genes in E. coli, either by means of a single vector or by cotransformation with multiple compatible plasmids. Co-expression was initially designed to generate protein complexes in vivo, and later served to extend the use of E. coli as a platform for the production of heterologous proteins. This review shows how the co-expression of genes in E. coli is challenging the production of protein complexes and proteins bearing post-translational modifications or unnatural amino acids. In addition, the importance of co-expression to achieve efficient secretion of recombinant proteins in E. coli is discussed, with recent insights into the use of co-expression to overproduce membrane proteins.  相似文献   

8.
9.
Calmodulin-like activity in the soluble fraction of Escherichia coli   总被引:8,自引:0,他引:8  
A heat-stable factor with properties similar to those of calmodulin was found in the fraction containing Ca2+-dependent cyclic AMP phosphodiesterase of Escherichiacoli. The factor activated such enzymes as cyclic nucleotide phosphodiesterase of bovine brain, (Ca2+,Mg2+)ATPase of human erythrocyte menbrane and myosin light chain kinase of rabbit myometrium in a Ca2+-dependent fashion with an apparent Ka of 5 × 10?5M. The factor and brain calmodulin had no effect on the phosphodiesterase of E.coli. It may be concluded that calmodulin or a calmodulin-like protein occurs in prokaryotes.  相似文献   

10.
The construction of expression vectors encoding either the human insulin A- or B-chains fused to a synthetic peptide and the temperature-induced expression of the recombinant genes in Escherichia coli are reported. Using this two-chain approach we also describe the separate isolation of the insulin A- and B-chains from inclusion bodies and their subsequent assembly into native human insulin. The production of the insulin fusion proteins were carried out in high-cell density fed-batch cultures using a synthetic medium with glucose as sole carbon and energy source. The expression of the recombinant genes by temperature-shift in high-cell density cultures of recombinant E. coli resulted in product yields of grams per litre of culture broth, e.g. 4.5 g of insulin B-chain fusion protein per litre of culture broth. This translates into an expression yield of about 800 mg of the insulin B-chain per litre of culture. Under similar cultivation conditions the expression yield of the insulin A-chain corresponds to approximately 600 mg per litre of culture. The metabolic burden imposed on the recombinant cells during temperature-induced production of insulin fusion proteins in high-cell density cultures is reflected in an increased respiratory activity and a reduction of the biomass yield coefficient with respect to glucose.  相似文献   

11.
Pharmaceutically relevant virus-like particles (VLPs) can potentially be manufactured cheaply and efficiently through in vitro assembly of viral structural protein in cell-free reactors, but a bottleneck for this processing route is the currently low-level expression of soluble viral protein in efficient cell factories such as Escherichia coli (E. coli). Here, we report expression levels of up to 180 mg L(-1) that are achievable from low-cell-density E. coli cultures using a simple and low cost strategy. We investigated effects of host strain, plasmid, inducer concentration, pre-induction temperature and cell density at induction with design of experiment (DOE). The statistical approach successfully identified significant effects and their interactions, and provided insights into the role of codon-usage effects in expression of viral structural protein. In particular, our results support the notion that full codon optimization may be unnecessary to improve expression of viral genes rich in E. coli rare codons; using a strategically modified host cell could provide a simpler and cheaper alternative.  相似文献   

12.
As Escherichia coli (E. coli) is well defined with respect to its genome and metabolism, it is a favored host organism for recombinant protein production. However, many processes for recombinant protein production run under suboptimal conditions caused by wrong or incomplete information from an improper screening procedure, because appropriate on-line monitoring systems are still lacking. In this study, the oxygen transfer rate (OTR), determined on-line in shake flasks by applying a respiration activity monitoring system (RAMOS) device, was used to characterize the metabolic state of the recombinant organisms. Sixteen clones of E. coli SCS1 with foreign gene sequences, encoding for different target proteins, were cultivated in an autoinduction medium, containing glucose, lactose, and glycerol, to identify relationships between respiration activity and target protein production. All 16 clones showed a remarkably different respiration activity, biomass, and protein formation under induced conditions. However, the clones could be classified into three distinct types, and correlations could be made between OTR patterns and target protein production. For two of the three types, a decrease of the target protein was observed, after the optimal harvest time had passed. The acquired knowledge was used to modify the autoinduction medium to increase the product yield. Additional 1.5 g/L glucose accelerated the production process for one clone, shifting the time point of the maximal product yield from 24 to 17 h. For another clone, lactose addition led to higher volumetric product yields, in fact 25 and 38% more recombinant protein for 2 and 6 g/L additional lactose, respectively.  相似文献   

13.
A framework for the online optimization of protein induction using green fluorescent protein (GFP)-monitoring technology was developed for high-cell-density cultivation of Escherichia coli. A simple and unstructured mathematical model was developed that described well the dynamics of cloned chloramphenicol acetyltransferase (CAT) production in E. coli JM105 was developed. A sequential quadratic programming (SQP) optimization algorithm was used to estimate model parameter values and to solve optimal open-loop control problems for piecewise control of inducer feed rates that maximize productivity. The optimal inducer feeding profile for an arabinose induction system was different from that of an isopropyl-beta-D-thiogalactopyranoside (IPTG) induction system. Also, model-based online parameter estimation and online optimization algorithms were developed to determine optimal inducer feeding rates for eventual use of a feedback signal from a GFP fluorescence probe (direct product monitoring with 95-minute time delay). Because the numerical algorithms required minimal processing time, the potential for product-based and model-based online optimal control methodology can be realized.  相似文献   

14.
15.
大肠杆菌高效表达重组蛋白策略   总被引:6,自引:0,他引:6  
大肠杆菌表达系统是基因表达技术中发展最早和目前应用最广的经典表达系统。利用该系统表达重组蛋白具有许多优越性,但其表达效率受诸多因素的影响。本文综述国内外利用大肠杆菌表达系统高效表达外源蛋白的策略,主要包括选择合适的启动子、改变信号肽结构、提高mRNA稳定性、提高翻译效率、表达稀有密码子、降低包涵体形成及蛋白降解,利用融合蛋白与分子伴侣、调控发酵条件实现高密度培养等。  相似文献   

16.
Abstract The bacterial species Escherichia coli has proven to be a powerful tool in the molecular analysis of polyhydroxyalkanoate (PHA) biosynthesis. In addition, E. coli holds promise as a source for economical PHA production. Using this microorganism, clones have been developed in our laboratory which direct the synthesis of poly-β-hydroxybutyrate (PHB) to levels as high as 95% of the cell dry weight. These clones have been further enhanced by the addition of a genetically mediated lysis system that allows the PHB granules to be released gently and efficiently. This paper describes these developments, as well as the use of an E. coli strain to produce the copolymer poly-(3-hydroxybutyrate- co -3-hydroxyvalerate (PHB- co -3-).  相似文献   

17.
18.
Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. The ribosomal machinery, located in the cytoplasm is an outstanding catalyst of recombinant protein biosynthesis. Escherichia coli facilitates protein expression by its relative simplicity, its inexpensive and fast high-density cultivation, the well-known genetics and the large number of compatible tools available for biotechnology. Especially the variety of available plasmids, recombinant fusion partners and mutant strains have advanced the possibilities with E. coli. Although often simple for soluble proteins, major obstacles are encountered in the expression of many heterologous proteins and proteins lacking relevant interaction partners in the E. coli cytoplasm. Here we review the current most important strategies for recombinant expression in E. coli. Issues addressed include expression systems in general, selection of host strain, mRNA stability, codon bias, inclusion body formation and prevention, fusion protein technology and site-specific proteolysis, compartment directed secretion and finally co-overexpression technology. The macromolecular background for a variety of obstacles and genetic state-of-the-art solutions are presented.  相似文献   

19.
Escherichia coli is one of the major microorganisms for recombinant protein production because it has been best characterized in terms of molecular genetics and physiology, and because of the availability of various expression vectors and strains. The synthesis of proteins is one of the most energy consuming processes in the cell, with the result that cellular energy supply may become critical. Indeed, the so called metabolic burden of recombinant protein synthesis was reported to cause alterations in the operation of the host's central carbon metabolism.To quantify these alterations in E. coli metabolism in dependence of the rate of recombinant protein production, 13C-tracer-based metabolic flux analysis in differently induced cultures was used. To avoid dilution of the 13C-tracer signal by the culture history, the recombinant protein produced was used as a flux probe, i.e., as a read out of intracellular flux distributions. In detail, an increase in the generation rate rising from 36 mmolATP gCDW−1 h−1 for the reference strain to 45 mmolATP gCDW−1 h−1 for the highest yielding strain was observed during batch cultivation. Notably, the flux through the TCA cycle was rather constant at 2.5 ± 0.1 mmol gCDW−1 h−1, hence was independent of the induced strength for gene expression. E. coli compensated for the additional energy demand of recombinant protein synthesis by reducing the biomass formation to almost 60%, resulting in excess NADPH. Speculative, this excess NADPH was converted to NADH via the soluble transhydrogenase and subsequently used for ATP generation in the electron transport chain. In this study, the metabolic burden was quantified by the biomass yield on ATP, which constantly decreased from 11.7 gCDW mmolATP−1 for the reference strain to 4.9 gCDW mmolATP−1 for the highest yielding strain. The insights into the operation of the metabolism of E. coli during recombinant protein production might guide the optimization of microbial hosts and fermentation conditions.  相似文献   

20.
Soluble expression of proteins in a relevant form for functional and structural investigations still often remains a challenge. Although many biochemical factors are known to affect solubility, a thorough investigation of yield-limiting factors is normally not feasible in high-throughput efforts. Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations. These include engineered strains for rare codon supplementation, increased disulfide bond formation in the cytoplasm and novel vectors for secretion to the periplasm or culture medium. Combining these variants with expression construct truncations design, we report on parallel cloning and expression of more than 300 constructs representing 24 selected proteins; including full-length variants of human growth factors, interleukins and growth factor binding proteins. This rapid screening approach appears highly suitable for high-throughput efforts targeting either large sets of proteins or more focused investigations regarding individual high-profile targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号