首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutants Saccharomyces cerevisiae deleted on the trehalose-6-phosphate synthase gene (tps1) and their parental wild-type cells were submitted to hydrostatic pressure in the range of 0–200 MPa. Experimental evidence showed that viability for both strains decreased with increasing pressure and that tps1 mutants, unable to accumulate trehalose, were more sensitive to hydrostatic pressure than the wild-type cells. Additionally, both tps1 and wild-type cells in the stationary phase, when there is an accumulation of endogenous trehalose, were more resistant to pressure than proliferating cells. Under these conditions, mutant cells were also more sensitive to pressure treatment than the wild type. The present work also showed that mild pressure pretreatment did not induce hydrostatic pressure resistance (barotolerance) in yeast cells.  相似文献   

2.
The acquisition of tolerance to high hydrostatic pressure of 220 MPa (HHP) in response to a 0.4 mM hydrogen peroxide, 6% ethanol and cold-shock (10 degrees C) pretreatment for different lengths of times was studied in the yeast Saccharomyces cerevisiae. The protection conferred by these different treatments was similar ( approximately 3 log cycles) and time-dependent. Analysis of the induction of the most pressure up-regulated genes under these conditions was investigated by RT-PCR. Our results revealed that the cell stress response to HHP shares common features with hydrogen peroxide and ethanol stresses, but differs in some way to cold-shock.  相似文献   

3.
AIMS: Saccharomyces cerevisiae was used for studying the physiological effects of hydrostatic pressure. METHODS AND RESULTS: The effects of hydrostatic pressure on the ultrastructure of wild-type and trehalose-6-phosphate synthase (tps1) mutant cells were investigated by transmission electron microscopy. Pressure induced several morphological changes in wild-type and tps1 cells, the latter showing greater structural alterations. When the cells were submitted to a preheat treatment they both acquired resistance to the pressure treatment. CONCLUSION: As the tps1 mutant was 1000-fold more barosensitive than its parental strain, it showed greater structural alterations compared with the wild-type. Microscopic images of the yeast cells suggested that hydrostatic pressure induced changes in the cytoskeleton and therefore, on the cell wall and in the dynamics of the organelles. SIGNIFICANCE AND IMPACT OF THE STUDY: This work presents the effects of hydrostatic pressure on the morphology of yeast cells and confirms the importance of several different factors in the protection of cells against stress.  相似文献   

4.
An isolate of L. monocytogenes Scott A that is tolerant to high hydrostatic pressure (HHP), named AK01, was isolated upon a single pressurization treatment of 400 MPa for 20 min and was further characterized. The survival of exponential- and stationary-phase cells of AK01 in ACES [N-(2-acetamido)-2-aminoethanesulfonic acid] buffer was at least 2 log units higher than that of the wild type over a broad range of pressures (150 to 500 MPa), while both strains showed higher HHP tolerance (piezotolerance) in the stationary than in the exponential phase of growth. In semiskim milk, exponential-phase cells of both strains showed lower reductions upon pressurization than in buffer, but again, AK01 was more piezotolerant than the wild type. The piezotolerance of AK01 was retained for at least 40 generations in rich medium, suggesting a stable phenotype. Interestingly, cells of AK01 lacked flagella, were elongated, and showed slightly lower maximum specific growth rates than the wild type at 8, 22, and 30 degrees C. Moreover, the piezotolerant strain AK01 showed increased resistance to heat, acid, and H(2)O(2) compared with the wild type. The difference in HHP tolerance between the piezotolerant strain and the wild-type strain could not be attributed to differences in membrane fluidity, since strain AK01 and the wild type had identical in situ lipid melting curves as determined by Fourier transform infrared spectroscopy. The demonstrated occurrence of a piezotolerant isolate of L. monocytogenes underscores the need to further investigate the mechanisms underlying HHP resistance of food-borne microorganisms, which in turn will contribute to the appropriate design of safe, accurate, and feasible HHP treatments.  相似文献   

5.
Synchronously dividing haploid yeast cells were UV-irradiated in various stages of the cell cycle after release from alpha-factor arrest. In confirmation of earlier results (Chanet et al., 1973), in wild-type strains G1/S phase cells were found to be the most sensitive and late S/G2 cells the most resistant. Stationary-phase (G0) cells were significantly more UV resistant than G1 cells. Strains defective in nucleotide excision repair lost enhanced resistance in the G2 phase and were most UV-sensitive in the G0 state. Reduced G2 resistance was also observed in rad6 mutants but not in rad9 mutants. After UV-irradiation in G1 phase rad9 mutant cells showed a reduced G1/S phase arrest.  相似文献   

6.
Improved biofuels production requires a better understanding of industrial microorganisms. Some wild Saccharomyces cerevisiae strains, isolated from the fuel ethanol industry in Brazil, present exceptional fermentation performance, persistence and prevalence in the harsh industrial environment. Nevertheless, their physiology has not yet been systematically investigated. Here we present a first systematic evaluation of the widely used industrial strains PE-2, CAT-1, BG-1 and JP1, in terms of their tolerance towards process-related stressors. We also analyzed their growth physiology under heat stress. These strains were evaluated in parallel to laboratory and baker’s strains. Whereas the industrial strains performed in general better than the laboratory strains under ethanol or acetic acid stresses and on industrial media, high sugar stress was tolerated equally by all strains. Heat and low pH stresses clearly distinguished fuel ethanol strains from the others, indicating that these conditions might be the ones that mostly exert selective pressure on cells in the industrial environment. During shake-flask cultivations using a synthetic medium at 37 °C, industrial strains presented higher ethanol yields on glucose than the laboratory strains, indicating that they could have been selected for this trait—a response to energy-demanding fermentation conditions. These results might be useful to guide future improvements of large-scale fuel ethanol production via engineering of stress tolerance traits in other strains, and eventually also for promoting the use of these fuel ethanol strains in different industrial bioprocesses.  相似文献   

7.
During industrial production process using yeast, cells are exposed to the stress due to the accumulation of ethanol, which affects the cell growth activity and productivity of target products, thus, the ethanol stress-tolerant yeast strains are highly desired. To identify the target gene(s) for constructing ethanol stress tolerant yeast strains, we obtained the gene expression profiles of two strains of Saccharomyces cerevisiae, namely, a laboratory strain and a strain used for brewing Japanese rice wine (sake), in the presence of 5% (v/v) ethanol, using DNA microarray. For the selection of target genes for breeding ethanol stress tolerant strains, clustering of DNA microarray data was performed. For further selection, the ethanol sensitivity of the knockout mutants in each of which the gene selected by DNA microarray analysis is deleted, was also investigated. The integration of the DNA microarray data and the ethanol sensitivity data of knockout strains suggests that the enhancement of expression of genes related to tryptophan biosynthesis might confer the ethanol stress tolerance to yeast cells. Indeed, the strains overexpressing tryptophan biosynthesis genes showed a stress tolerance to 5% ethanol. Moreover, the addition of tryptophan to the culture medium and overexpression of tryptophan permease gene conferred ethanol stress tolerance to yeast cells. These results indicate that overexpression of the genes for trypophan biosynthesis increases the ethanol stress tolerance. Tryptophan supplementation to culture and overexpression of the tryptophan permease gene are also effective for the increase in ethanol stress tolerance. Our methodology for the selection of target genes for constructing ethanol stress tolerant strains, based on the data of DNA microarray analysis and phenotypes of knockout mutants, was validated.  相似文献   

8.
Increasing industrial competitiveness and productivity demand that recombinant yeast strains, used in many different processes, be constantly adapted and/or genetically improved to suit changing requirements. Among yeasts, Saccharomyces cerevisiae is the best-studied organism, and the most frequently employed yeast in industrial processes. In the present study, laboratory strains and industrial S. cerevisiae strains were stably transformed with a novel vector containing the glucoamylase cDNA of Aspergillus awamori flanked by delta-sequences (deltaGlucodelta), and lacking a positive selection marker. Co-transformation with known plasmids allowed selection by auxotrophic complementation of the leu2 mutation and/or geneticin resistance (G418). In all cases, several copies of the deltaGlucodelta vector were inserted into the genome of the yeast cell without selective pressure, showing 100% stability after 80 generations. Transformation frequency of the new vector was similar for S. cerevisiae laboratory strains and industrial wild-type S. cerevisiae strains. This novel genetic transformation system is versatile and suitable to introduce several stable copies of a desired expression cassette into the genome of different S. cerevisiae yeast strains.  相似文献   

9.
Yeasts are unicellular organisms that are exposed to a highly variable environment, concerning the availability of nutrients, temperature, pH, radiation, access to oxygen and, specially, water activity. Evolution has selected yeasts to tolerate, to a certain extent, these environmental stresses. High hydrostatic pressure (HHP) exerts a broad effect upon yeast cells, interfering with the cell membranes, cellular architecture and in processes ofpolymerisation and denaturation of proteins. Gene expression patterns in response to HHP revealed a stress response profile. The majority of the upregulated genes were involved in stress defence and carbohydrate metabolism while most of the repressed ones were in cell cycle progression and protein synthesis categories. In addition, in the present work it was seen that mild pressure induced cell cycle arrest and protection against severe stresses, such as high temperature, high pressure and ultra cold shock. Nevertheless, this protection was only significant if the cells were incubated at atmospheric pressure after the HHP treatment. Expression of genes that were upregulated by HHP and are related to resistance to this stresses were also analyzed, and, for the majority of them, higher induction was attained after 15 min post-pressurization. Taken together, the results imply an interconnection among stresses.  相似文献   

10.
An isolate of L. monocytogenes Scott A that is tolerant to high hydrostatic pressure (HHP), named AK01, was isolated upon a single pressurization treatment of 400 MPa for 20 min and was further characterized. The survival of exponential- and stationary-phase cells of AK01 in ACES [N-(2-acetamido)-2-aminoethanesulfonic acid] buffer was at least 2 log units higher than that of the wild type over a broad range of pressures (150 to 500 MPa), while both strains showed higher HHP tolerance (piezotolerance) in the stationary than in the exponential phase of growth. In semiskim milk, exponential-phase cells of both strains showed lower reductions upon pressurization than in buffer, but again, AK01 was more piezotolerant than the wild type. The piezotolerance of AK01 was retained for at least 40 generations in rich medium, suggesting a stable phenotype. Interestingly, cells of AK01 lacked flagella, were elongated, and showed slightly lower maximum specific growth rates than the wild type at 8, 22, and 30°C. Moreover, the piezotolerant strain AK01 showed increased resistance to heat, acid, and H2O2 compared with the wild type. The difference in HHP tolerance between the piezotolerant strain and the wild-type strain could not be attributed to differences in membrane fluidity, since strain AK01 and the wild type had identical in situ lipid melting curves as determined by Fourier transform infrared spectroscopy. The demonstrated occurrence of a piezotolerant isolate of L. monocytogenes underscores the need to further investigate the mechanisms underlying HHP resistance of food-borne microorganisms, which in turn will contribute to the appropriate design of safe, accurate, and feasible HHP treatments.  相似文献   

11.
In biology, scientist's interest for high hydrostatic pressure (HHP) has increased over the last 20 years, for both research and industrial developments, mainly because of the low energy associated with its application in liquid phase and its capacity to inactivate pathogens. It is now considered as an interesting alternative to heat treatments for the inactivation of contaminants in many products, from foods to pharmaceutical preparations. This last statement implies different objectives according to the type of product. The therapeutic properties of pharmaceutical preparations or other biological media of physiological importance are in general associated with specific and well-defined molecules such as proteins. Their activity mainly depends on their spatial conformation, maintained by weak chemical bonds that are often pressure sensitive. In this case, the optimization of a HHP process can be more complex than for foods, for which the organoleptic molecules are less pressure sensitive, and the evaluation of their preservation is more subjective and highly dependent on the consumers acceptance. The objective of this review is therefore to underline how, even if the basic concept for the optimization of a pathogen reduction process using HHP is the same whatever the product, major differences arise from the product itself and its final use.  相似文献   

12.
13.
以植物乳杆菌ATCC8014为试材,研究超高压对其能量代谢的影响。建立了用氯化碘硝基四唑紫测定ATCC8014的INT代谢还原活性的比色法。用比色法测定了超高压对ATCC8014的INT代谢还原活性与葡萄糖利用的影响。试验结果表明,150~250MPa作用15min在MRS琼脂培养基上随着压力的增大菌落数显著降低,INT代谢还原活性降低显著,葡萄糖的利用变化不明显;超过300MPa后,葡萄糖的利用才显著降低;400MPa处理15min,尽管在MRS琼脂培养基上菌落数低于检测限,INT代谢还原活性为0%,而葡萄糖的利用能力仍为对照组的56.1%,超高压作用下ATCC8014的灭活与INT代谢还原活性的降低的相关性较好。说明ATCC8014的细胞膜上参与葡萄糖的吸收和运输的酶、糖酵解的酶与调节系统比三羧酸循环的酶与调节系统较耐压。三羧酸循环比糖酵解对超高压敏感,三羧酸循环的抑制是超高压灭活其的重要原因,这为了探讨超高压杀灭植物乳杆菌的机制提供了一定的理论依据。  相似文献   

14.
During the industrial production of ethanol using yeast, the cells are exposed to stresses that affect their growth and productivity; therefore, stress-tolerant yeast strains are highly desirable. To increase ethanol production from glycerol, a greater tolerance to osmotic and ethanol stress was engineered in yeast strains that were impaired in endogenous glycerol production by the overexpression of both SPT3 and SPT15, components of the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex. The engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) formed significantly more biomass compared to the strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), and both engineered strains displayed increased biomass when compared to the control YPH499 fps1Δgpd2Δ (pESC-TRP) strain. The trehalose accumulation and ergosterol content of these strains were 2.3-fold and 1.6-fold higher, respectively, than the parent strains, suggesting that levels of cellular membrane components were correlated with the enhanced stress tolerance of the engineered strains. Consequently, the ethanol production of the engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) was 1.8-fold more than that of strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), with about 8.1g/L ethanol produced. In conclusion, we successfully established that the co-expression of SPT3 and SPT15 that improved the fermentation performance of the engineered yeast strains which produced higher ethanol yields than stress-sensitive yeast strains.  相似文献   

15.
郭亭  梁达奉 《微生物学报》2008,35(2):0188-0192
采用休止细胞梯度生长法, 对工业糖蜜酿酒酵母(Saccharomyces cerevisiae)菌株进行高浓度酒精、高温和高渗透压, 以及糠醛毒性、苯酚毒性、乙酸毒性和抗生素G418毒性的耐受性分析。结果表明, 所测定的工业酵母菌株对这些逆境条件的耐受性有明显的差别; 其中AS2.1189和AS2.1190对测定的胁迫条件均表现出相对较好的耐受性; 396对乙酸毒性和G418毒性具有很好的耐受性; 2610对高温表现出较强的耐受性。  相似文献   

16.
工业用糖蜜酿酒酵母菌株耐受性分析研究   总被引:2,自引:0,他引:2  
郭亭  梁达奉 《微生物学通报》2008,35(2):0188-0192
采用休止细胞梯度生长法,对工业糖蜜酿酒酵母(Saccharomyces cerevisiae)菌株进行高浓度酒精、高温和高渗透压,以及糠醛毒性、苯酚毒性、乙酸毒性和抗生素G418毒性的耐受性分析.结果表明,所测定的工业酵母菌株对这些逆境条件的耐受性有明显的差别;其中AS2.1189和AS2.1190对测定的胁迫条件均表现出相对较好的耐受性;396对乙酸毒性和G418毒性具有很好的耐受性;2610对高温表现出较强的耐受性.  相似文献   

17.
High hydrostatic pressure (HHP) exerts diverse effects on microorganisms, leading to stress response and cell death. While inactivation of microorganisms by lethal HHP is well investigated in the context of food preservation and the hygienic safety of minimal food processes, sublethal HHP stress response and its effect on adaptation and cross-protection is less understood. In this study, the HHP stress response of Lactobacillus sanfranciscensis was characterized and compared with cold, heat, salt, acid and starvation stress at the proteome level by using 2-DE so as to provide insight into general versus specific stress responses. Sixteen proteins were found to be affected by HHP and were identified by using N-terminal amino acid sequencing and MS. Only one slightly increased protein was specific to the HHP response and showed homology to a clp protease. The other proteins were influenced by most of the investigated stresses in a similar way as HHP. The highest similarity in the HHP proteome was found to be with cold- and NaCl-stressed cells, with 11 overlapping proteins. At the proteome level, L. sanfranciscensis appears to use overlapping subsets of stress-inducible proteins rather than stereotype responses. Our data suggest that a specific pressure response does not exist in this bacteria.  相似文献   

18.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

19.
20.
Aim:  The influence of environmental (temperature and pH) and biological (strain) parameters on the inactivation of Campylobacter jejuni by high hydrostatic pressure (HHP) was investigated.
Methods and Results:  Two clinical strains harvested in stationary phase were pressurized at 20°C and 37°C within a range of 50–400 MPa, in a phosphate (pH 7·0) or a citrate phosphate buffer (pH 5·6), for 10 min. Treatment efficiencies were determined by logarithmic comparisons of culturable cells on blood agar before and after treatment. Results were statistically compared using an anova of culturable cells after treatment to evaluate the effect of all factors. At least a 7-log reduction in cell numbers was observed for both strains. The pH and the strains had no effect on HHP treatment at 20°C while at 37°C, both pH and strain influenced significantly the HHP treatment on C. jejuni .
Conclusions:  The pressure efficacy on C. jejuni eradication was affected by both environmental and biological factors.
Significance and Impact of the Study:  Depending on the treatment conditions, C. jejuni sensitivity to HHP can significantly vary. The determination of the inactivation treatment by HPP has to be normalized considering the interaction of environmental and biological factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号