首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The IL-1 receptor-associated kinase (IRAK/mPLK) is linked to the regulation of nuclear factor-kappaB (NF-kappaB)-dependent gene expression. Here we describe a novel binding partner of IRAK/mPLK that we term SIMPL (signaling molecule that associates with the mouse pelle-like kinase). Overexpression of SIMPL leads to the activation of NF-kappaB-dependent promoters, and inactivation of SIMPL inhibits IRAK/mPLK as well as tumor necrosis factor receptor type I-induced NF-kappaB activity. Dominant inhibitory alleles of IkappaB kinase (IKKalpha or IKKbeta) block the activation of NF-kappaB by IRAK/mPLK and SIMPL. Furthermore, SIMPL binds IRAK/mPLK and the IKKs in vitro and in vivo. In the presence of antisense mRNA to SIMPL, the physical association between IRAK/mPLK and IKKbeta but not IRAK/mPLK and IKKalpha is greatly diminished. Moreover, dominant-negative SIMPL blocks IKKalpha- or IKKbeta-induced NF-kappaB activity. These results lead us to propose a model in which SIMPL functions to regulate NF-kappaB activity by linking IRAK/mPLK to IKKbeta/alpha-containing complexes.  相似文献   

2.
3.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

4.
Calcium/calmodulin-dependent protein kinase kinase (CaMKK) and Akt are two multifunctional kinases involved in many cellular responses. Although Akt and Ca(2+) signals have been implicated in NF-kappaB activation in response to certain stimuli, these results are still controversial, and the mechanism(s) involved remains unknown. In this study, we show the roles that CaMKK and Akt play in regulating interleukin-1beta (IL-1beta)-induced NF-kappaB signaling. In human embryonic kidney 293 cells, IL-1beta induces IkappaB kinase beta (IKKbeta) activation, IkappaBalpha degradation, NF-kappaB transactivation, and weak Akt activation. A CaMKK inhibitor (KN-93) and phosphatidylinositol 3-kinase inhibitors (wortmannin and LY294002) do not inhibit IL-1beta-induced NF-kappaB activation. However, IL-1beta-induced NF-kappaB activity is attenuated by increased intracellular calcium in response to ionomycin, UTP, or thapsigargin or by overexpression of CaMKKc and/or Akt. Ionomycin and CaMKKc overexpression increases Akt phosphorylation on Thr(308) and enzyme activity. Under these conditions or upon overexpression of wild type Akt, IL-1beta-induced IKKbeta activity is diminished. Furthermore, a dominant negative mutant of Akt abolishes IKKbeta inhibition by CaMKKc and ionomycin, suggesting that Akt acts as a mediator of CaMKK signaling to inhibit IL-1beta-induced IKK activity at an upstream target site. We have also identified a novel interaction between CaMKK-stimulated Akt and interleukin-1 receptor-associated kinase 1 (IRAK1), which plays a key role in IL-1beta-induced NF-kappaB activation. CaMKKc and Akt overexpression decreases IRAK1-mediated NF-kappaB activity and its association with MyD88 in response to IL-1beta stimulation. Furthermore, CaMKKc and Akt overexpression increases IRAK1 phosphorylation at Thr(100), and point mutation of this site abrogates the inhibitory effect of Akt on IRAK1-mediated NF-kappaB activation. Taken together, these results indicate a novel regulatory mechanism for IL-1beta signaling and suggest that CaMKK-dependent Akt activation inhibits IL-1beta-induced NF-kappaB activation through interference with the coupling of IRAK1 to MyD88.  相似文献   

5.
TLR8-mediated NF-kappaB and IRF7 activation are abolished in human IRAK-deficient 293 cells and IRAK4-deficient fibroblast cells. Both wild-type and kinase-inactive mutants of IRAK and IRAK4, respectively, restored TLR8-mediated NF-kappaB and IRF7 activation in the IRAK- and IRAK4-deficient cells, indicating that the kinase activity of IRAK and IRAK4 is probably redundant for TLR8-mediated signaling. We recently found that TLR8 mediates a unique NF-kappaB activation pathway in human 293 cells and mouse embryonic fibroblasts, accompanied only by IkappaBalpha phosphorylation and not IkappaBalpha degradation, whereas interleukin (IL)-1 stimulation causes both IkappaBalpha phosphorylation and degradation. The intermediate signaling events mediated by IL-1 (including IRAK modifications and degradation and TAK1 activation) were not detected in cells stimulated by TLR8 ligands. TLR8 ligands trigger similar levels of IkappaBalpha phosphorylation and NF-kappaB and JNK activation in TAK1(-/-) mouse embryo fibroblasts (MEFs) as compared with wild-type MEFs, whereas lack of TAK1 results in reduced IL-1-mediated NF-kappaB activation and abolished IL-1-induced JNK activation. The above results indicate that although TLR8-mediated NF-kappaB and JNK activation are IRAK-dependent, they do not require IRAK modification and are TAK1-independent. On the other hand, TLR8-mediated IkappaBalpha phosphorylation, NF-kappaB, and JNK activation are completely abolished in MEKK3(-/-) MEFs, whereas IL-1-mediated signaling was only moderately reduced in these deficient MEFs as compared with wild-type cells. The differences between IL-1R- and TLR8-mediated NF-kappaB activation are also reflected at the level of IkappaB kinase (IKK) complex. TLR8 ligands induced IKKgamma phosphorylation, whereas IKKalpha/beta phosphorylation and IKKgamma ubiquitination that can be induced by IL-1 were not detected in cells treated with TLR8 ligands. We postulate that TLR8-mediated MEKK3-dependent IKKgamma phosphorylation might play an important role in the activation of IKK complex, leading to IkappaBalpha phosphorylation.  相似文献   

6.
7.
Stimulation of the type 1 IL-1R (IL-1R1) and the IL-18R by their cognate ligands induces recruitment of the IL-1R-associated kinase (IRAK). Activation of IRAK leads in turn to nuclear translocation of NF-kappaB, which directs expression of innate and adaptive immune response genes. To study IRAK function in cytokine signaling, we generated cells and mice lacking the IRAK protein. IRAK-deficient fibroblasts show diminished activation of NF-kappaB when stimulated with IL-1. Immune effector cells without IRAK exhibit a defective IFN-gamma response to costimulation with IL-18. Furthermore, mice lacking the Irak gene demonstrate an attenuated response to injected IL-1. Deletion of Irak, however, does not affect the ability of mice to develop delayed-type hypersensitivity or clear infection with the intracellular parasite, Listeria monocytogenes. These results demonstrate that although IRAK participates in IL-1 and IL-18 signal transduction, residual cytokine responsiveness operates through an IRAK-independent pathway.  相似文献   

8.
Considering the potential role of interleukin-8 (IL-8) in inflammation, angiogenesis, tumorigenesis, and metastasis, we investigated the molecular mechanism involved in IL-8-mediated signaling. In this report we provide evidence that like TNF, an inducer of NF-kappaB and also a NF-kappaB-dependent gene product, IL-8 induces NF-kappaB in a unique pathway. IL-8 induces NF-kappaB activation in a dose-dependent manner in different cell types as detected by a DNA-protein binding assay. IL-8 induces NF-kappaB-dependent reporter gene expression as well as ICAM-1, VCAM-1, and Cox-2 expression. IL-8 also induces IkappaBalpha phosphorylation followed by degradation and p65 translocation. IL-8 induces c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase (MAPK) in a dose- and time-dependent manner. IL-8-induced NF-kappaB activation is for the most part unaltered when cells are transfected with dominant-negative TRADD, FADD, or TRAF2, but is inhibited with dominant-negative TRAF6-, NIK-, IKK-, or IkappaBalpha-transfected cells. The data suggest that IL-8-induced NF-kappaB activation proceeds through a TRAF2-independent but TRAF6-dependent pathway, followed by recruitment of IRAK and activation of IKK. IL-8-induced NF-kappaB activation is not observed in a cell-permeable peptide that has TRAF6 binding motif-treated cells or IRAK-deficient cells. IL-8-induced NF-kappaB activation proceeds mostly through interaction with TRAF6 and partially through the Rho-GTPase pathways. This is the first report that IL-8 induces NF-kappaB in a distinct pathway, and activation of NF-kappaB and its dependent genes may be one of the pathways of IL-8-induced inflammation and angiogenesis.  相似文献   

9.
Inflammation contributes to insulin resistance in diabetes and obesity. Mouse Pelle-like kinase (mPLK, homolog of human IL-1 receptor-associated kinase (IRAK)) participates in inflammatory signaling. We evaluated IRS-1 as a novel substrate for mPLK that may contribute to linking inflammation with insulin resistance. Wild-type mPLK, but not a kinase-inactive mutant (mPLK-KD), directly phosphorylated full-length IRS-1 in vitro. This in vitro phosphorylation was increased when mPLK was immunoprecipitated from tumor necrosis factor (TNF)-alpha-treated cells. In NIH-3T3(IR) cells, wild-type mPLK (but not mPLK-KD) co-immunoprecipitated with IRS-1. This association was increased by treatment of cells with TNF-alpha. Using mass spectrometry, we identified Ser(24) in the pleckstrin homology (PH) domain of IRS-1 as a specific phosphorylation site for mPLK. IRS-1 mutants S24D or S24E (mimicking phosphorylation at Ser(24)) had impaired ability to associate with insulin receptors resulting in diminished tyrosine phosphorylation of IRS-1 and impaired ability of IRS-1 to bind and activate PI-3 kinase in response to insulin. IRS-1-S24D also had an impaired ability to mediate insulin-stimulated translocation of GLUT4 in rat adipose cells. Importantly, endogenous mPLK/IRAK was activated in response to TNF-alpha or interleukin 1 treatment of primary adipose cells. In addition, using a phospho-specific antibody against IRS-1 phosphorylated at Ser(24), we found that interleukin-1 or TNF-alpha treatment of Fao cells stimulated increased phosphorylation of endogenous IRS-1 at Ser(24). We conclude that IRS-1 is a novel physiological substrate for mPLK. TNF-alpha-regulated phosphorylation at Ser(24) in the pleckstrin homology domain of IRS-1 by mPLK/IRAK represents an additional mechanism for cross-talk between inflammatory signaling and insulin signaling that may contribute to metabolic insulin resistance.  相似文献   

10.
Interleukin-1 (IL-1) is a proinflammatory cytokine that recognizes a surface receptor complex and generates multiple cellular responses. IL-1 stimulation activates the mitogen-activated protein kinase kinase kinase TAK1, which in turn mediates activation of c-Jun N-terminal kinase and NF-kappaB. TAB2 has previously been shown to interact with both TAK1 and TRAF6 and promote their association, thereby triggering subsequent IL-1 signaling events. The serine/threonine kinase IL-1 receptor-associated kinase (IRAK) also plays a role in IL-1 signaling, being recruited to the IL-1 receptor complex early in the signal cascade. In this report, we investigate the role of IRAK in the activation of TAK1. Genetic analysis reveals that IRAK is required for IL-1-induced activation of TAK1. We show that IL-1 stimulation induces the rapid but transient association of IRAK, TRAF6, TAB2, and TAK1. TAB2 is recruited to this complex following translocation from the membrane to the cytosol upon IL-1 stimulation. In IRAK-deficient cells, TAB2 translocation and its association with TRAF6 are abolished. These results suggest that IRAK regulates the redistribution of TAB2 upon IL-1 stimulation and facilitates the formation of a TRAF6-TAB2-TAK1 complex. Formation of this complex is an essential step in the activation of TAK1 in the IL-1 signaling pathway.  相似文献   

11.
Interleukin-1 (IL-1) stimulation leads to the recruitment of interleukin-1 receptor-associated kinase (IRAK) to the IL-1 receptor, where IRAK is phosphorylated, ubiquitinated, and eventually degraded. Kinase-inactive mutant IRAK is still phosphorylated in response to IL-1 stimulation when it is transfected into IRAK-deficient cells, suggesting that there must be an IRAK kinase in the pathway. The fact that IRAK4, another IRAK family member necessary for the IL-1 pathway, is able to phosphorylate IRAK in vitro suggests that IRAK4 might be the IRAK kinase. However, we now found that the IRAK4 kinase-inactive mutant had the same ability as the wild-type IRAK4 in restoring IL-1-mediated signaling in human IRAK4-deficient cells, including NFkappaB-dependent reporter gene expression, the activation of NFkappaB and JNK, and endogenous IL-8 gene expression. These results strongly indicate that the kinase activity of human IRAK4 is not necessary for IL-1 signaling. Furthermore, we showed that the kinase activity of IRAK4 was not necessary for IL-1-induced IRAK phosphorylation, suggesting that IRAK phosphorylation can probably be achieved either by autophosphorylation or by trans-phosphorylation through IRAK4. In support of this, only the impairment of the kinase activity of both IRAK and IRAK4 efficiently abolished the IL-1 pathway, demonstrating that the kinase activity of IRAK and IRAK4 is redundant for IL-1-mediated signaling. Moreover, consistent with the fact that IRAK4 is a necessary component of the IL-1 pathway, we found that IRAK4 was required for the efficient recruitment of IRAK to the IL-1 receptor complex.  相似文献   

12.
A myriad of stimuli including proinflammatory cytokines, viruses, and chemical and mechanical insults activate a kinase complex composed of IkappaB kinase beta (IKK-beta), IKK-alpha, and IKK-gamma/N, leading to changes in NF-kappaB-dependent gene expression. However, it is not clear how the NF-kappaB response is tailored to specific cellular insults. Signaling molecule that interacts with mouse pelle-like kinase (SIMPL) is a signaling component required for tumor necrosis factor alpha (TNF-alpha)-dependent but not interleukin-1-dependent NF-kappaB activation. Herein we demonstrate that nuclear localization of SIMPL is required for type I TNF receptor-induced NF-kappaB activity. SIMPL interacts with nuclear p65 in a TNF-alpha-dependent manner to promote endogenous NF-kappaB-dependent gene expression. The interaction between SIMPL and p65 enhances p65 transactivation activity. These data support a model in which TNF-alpha activation of NF-kappaB dependent-gene expression requires nuclear relocalization of p65 as well as nuclear relocalization of SIMPL, generating a TNF-alpha-specific induction of gene expression.  相似文献   

13.
Rip2 (Rick, Cardiak, CCK2, and CARD3) is a serine/threonine kinase containing a caspase recruitment domain (CARD) at the C terminus. Previous reports have shown that Rip2 is involved in multiple receptor signaling pathways that are important for innate and adaptive immune responses. However, it is not known whether Rip2 kinase activity is required for its function. Here we confirm that Rip2 participates in lipopolysaccharide (LPS)/Toll-like receptor (TLR4) signaling and demonstrate that its kinase activity is not required. Upon LPS stimulation, Rip2 was transiently recruited to the TLR4 receptor complex and associated with key TLR signaling mediators IRAK1 and TRAF6. Furthermore, Rip2 kinase activity was induced by LPS treatment. These data indicate that Rip2 is directly involved in the LPS/TLR4 signaling. Whereas macrophages from Rip2-deficient mice showed impaired NF-kappaB and p38 mitogen-activated protein kinase activation and reduced cytokine production in response to LPS stimulation, LPS signaling was intact in macrophages from mice that express Rip2 kinase-dead mutant. These results demonstrate that Rip2-mediated LPS signaling is independent of its kinase activity. Our findings strongly suggest that Rip2 functions as an adaptor molecule in transducing signals from immune receptors.  相似文献   

14.
15.
16.
白细胞介素1受体相关激酶(interleukin-1 receptor-associatd kinase,IRAK)家族被认为是TLR/IL-1R信号通路中重要的信号分子。迄今为止,已发现4个IRAK家族成员,其中IRAK-1和IRAK.4有激酶活性,IRAK-2和IRAK-M无激酶活性。最近的研究发现IRAK-M参与负性调控TLR信号通路和具有天然免疫的作用。本文就IRAK—M的结构特点及在TLR信号转导的分子机制和免疫耐受中的作用进行综述。  相似文献   

17.
The interleukin-1 (IL-1) receptor-associated kinase 1 (IRAK1) is a member of the IRAK kinase family that plays a pivotal role in the Toll/IL-1 receptor (TIR) family signaling cascade. We have identified a novel splice variant, IRAK1c, which lacks a region encoded by exon 11 of the IRAK1 gene. IRAK1c expression was confirmed by both RNA and protein detection. Although both IRAK1 and IRAK1c are expressed in most tissues tested, IRAK1c is the predominant form of IRAK1 expressed in the brain. Unlike IRAK1, IRAK1c lacks kinase activity and cannot be phosphorylated by IRAK4. However, IRAK1c retains the ability to strongly interact with IRAK2, MyD88, Tollip, and TRAF6. Overexpression of IRAK1c suppressed NF-kappaB activation and blocked IL-1beta-induced IL-6 as well as lipopolysaccharide- and CpG-induced tumor necrosis factor alpha production in multiple cellular systems. Mechanistically, we provide evidence that IRAK1c functions as a dominant negative by failing to be phosphorylated by IRAK4, thus remaining associated with Tollip and blocking NF-kappaB activation. The presence of a regulated, alternative splice variant of IRAK1 that functions as a kinase-dead, dominant-negative protein adds further complexity to the variety of mechanisms that regulate TIR signaling and the subsequent inflammatory response.  相似文献   

18.
The E3 ubiquitin ligase Pellino 1 can be interconverted between inactive and active forms by a reversible phosphorylation mechanism. In vitro, phosphorylation and activation can be catalysed by either the IRAKs [IL (interleukin)-1-receptor-associated kinases] IRAK1 and IRAK4, or the IKK {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase}-related kinases [IKK? and TBK1 (TANK {TRAF [TNF (tumour-necrosis-factor)-receptor-associated factor]-associated NF-κB activator}-binding kinase 1)]. In the present study we establish that IRAK1 is the major protein kinase that mediates the IL-1-stimulated activation of Pellino 1 in MEFs (mouse embryonic fibroblasts) or HEK (human embryonic kidney)-293 cells, whereas the IKK-related kinases activate Pellino 1 in TNFα-stimulated MEFs. The IKK-related kinases are also the major protein kinases that activate Pellino 1 in response to TLR (Toll-like receptor) ligands that signal via the adaptors MyD88 (myeloid differentiation primary response gene 88) and/or TRIF [TIR (Toll/IL-1 receptor) domain-containing adaptor protein inducing interferon β]. The present studies demonstrate that, surprisingly, the ligands that signal via MyD88 do not always employ the same protein kinase to activate Pellino 1. Our results also establish that neither the catalytic activity of IRAK1 nor the activation of Pellino 1 is required for the initial transient activation of NF-κB and MAPKs (mitogen-activated protein kinases) that is triggered by IL-1 or TNFα in MEFs, or by TLR ligands in macrophages. The activation of Pellino 1 provides the first direct readout for IRAK1 catalytic activity in cells.  相似文献   

19.
20.
IL-18 is an important cytokine for both innate and adaptive immunity. NK T cells and Th1 cells depend on IL-18 for their divergent functions. The IL-18R, IL-1R, and mammalian Toll-like receptors (TLRs) share homologous intracellular domains known as the TLR/IL-1R/plant R domain. Previously, we reported that IL-1R-associated kinase (IRAK)-4 plays a critical role in IL-1R and TLR signaling cascades and is essential for the innate immune response. Because TLR/IL-1R/plant R-containing receptors mediate signal transduction in a similar fashion, we investigated the role of IRAK-4 in IL-18R signaling. In this study, we show that IL-18-induced responses such as NK cell activity, Th1 IFN-gamma production, and Th1 cell proliferation are severely impaired in IRAK-4-deficient mice. IRAK-4(-/-) Th1 cells also do not exhibit NF-kappaB activation or IkappaB degradation in response to IL-18. Moreover, AP-1 activation which is triggered by c-Jun N-terminal kinase activation is also completely inhibited in IRAK-4(-/-) Th1 cells. These results suggest that IRAK-4 is an essential component of the IL-18 signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号