首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Genome Annotation Assessment Project tested current methods of gene identification, including a critical assessment of the accuracy of different methods. Two new databases have provided new resources for gene annotation: these are the InterPro database of protein domains and motifs, and the Gene Ontology database for terms that describe the molecular functions and biological roles of gene products. Efforts in genome annotation are most often based upon advances in computer systems that are specifically designed to deal with the tremendous amounts of data being generated by current sequencing projects. These efforts in analysis are being linked to new ways of visualizing computationally annotated genomes.  相似文献   

2.
Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants.  相似文献   

3.
4.
5.
6.
7.
The large number of ESTs generated for Arabidopsis and rice in recent years now act as an important complement to whole genome sequencing projects. The Arabidopsis Genome Initiative has begun a coordinated effort to sequence the entire genome and, as a result, increasing numbers of large sequence entries can be found in the public databases. In addition, the mitochondrial genome of Arabidopsis has been completely sequenced. Genome sequencing studies and the public sequence databases have begun to influence the direction of diverse areas of research from physiology to evolution.  相似文献   

8.
9.
Human gut microbiota modulates normal physiological functions, such as maintenance of barrier homeostasis and modulation of metabolism, as well as various chronic diseases including type 2 diabetes and gastrointestinal cancer. Despite decades of research, the composition of the gut microbiota remains poorly understood. Here, we established an effective extraction method to obtain high quality gut microbiota genomes, and analyzed them with third-generation sequencing technology. We acquired a large quantity of data from each sample and assembled large numbers of reliable contigs. With this approach, we constructed tens of completed bacterial genomes in which there were several new bacteria species. We also identified a new conditional pathogen, Enterococcus tongjius, which is a member of Enterococci. This work provided a novel and reliable approach to recover gut microbiota genomes, facilitating the discovery of new bacteria species and furthering our understanding of the microbiome that underlies human health and diseases.Subject terms: DNA sequencing, Mechanisms of disease  相似文献   

10.

Background

The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem.

Results

To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads.

Conclusions

Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.  相似文献   

11.
12.
A report on the Strategies for de novo assemblies of complex crop genomes workshop held at The Genome Analysis Centre, Norwich, UK, 8-10 October 2012.  相似文献   

13.
Evidence for the intermolecular recombination between the RNA genomes of picornaviruses and coronaviruses as well as current models of the mechanisms of these phenomena are reviewed. Biological implications of the recombination between RNA genomes are briefly discussed. Examples of the recombinant analysis of the viral genome functions are given.  相似文献   

14.
Gigabase-scale genome assemblies are now feasible using short-read sequencing technology, bringing the cost of such projects below the million-dollar mark.  相似文献   

15.
16.
17.
Recent spectacular advances in the technologies and strategies for DNA sequencing have profoundly accelerated the detailed analysis of genomes from myriad organisms. The past few years alone have seen the publication of near-complete or draft versions of the genome sequence of several well-studied, multicellular organisms - most notably, the human. As well as providing data of fundamental biological significance, these landmark accomplishments have yielded important strategic insights that are guiding current and future genome-sequencing projects.  相似文献   

18.
19.
20.
One RNA polymerase serving two genomes   总被引:9,自引:0,他引:9       下载免费PDF全文
Hedtke B  Börner T  Weihe A 《EMBO reports》2000,1(5):435-440
The land plant Arabidopsis thaliana contains three closely related nuclear genes encoding phage-type RNA polymerases (RpoT;1, RpoT;2 and RpoT;3). The gene products of RpoT;1 and RpoT;3 have previously been shown to be imported into mitochondria and chloroplasts, respectively. Here we show that the transit peptide of RpoT;2 possesses dual targeting properties. Transient expression assays in tobacco protoplasts as well as stable transformation of Arabidopsis plants demonstrate efficient targeting of fusion peptides consisting of the N-terminus of RpoT;2 joined to green fluorescent protein to both organelles. Thus, RpoT;2 might be the first RNA polymerase shown to transcribe genes in two different genomes. RNA polymerase activity of recombinant RpoT;2 is uneffected by the inhibitor tagetin, qualifying the gene product of RpoT;2 as a phage-type polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号