首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The electrostatic properties of charged bilayers and the bilayer component of biological membranes are often described theoretically by assuming the charge is smeared uniformly over the surface. This is one of the fundamental assumptions in the Gouy-Chapman-Stern (GCS) theory. However, the average distance between the charged phospholipids in a typical biological membrane is 2-3 nm, which is 2-3 times the Debye length in a 0.1 M salt solution. Existing discreteness-of-charge theories predict significant deviations from the GCS theory for the adsorption of ions to such membranes. We considered the predictions of the simplest discreteness-of-charge theory [Nelson, A. P., & McQuarrie, D. A. (1975) J. Theor. Biol. 55, 13-27], in which the charges are assumed to be fixed in a square lattice and the potential is described by the linearized Poisson-Boltzmann relation. This theory predicts deviations that are larger for counterions than for co-ions and much larger for divalent than for monovalent counterions. We tested these predictions by measuring the adsorption of a fluorescent monovalent anion and a paramagnetic divalent cation to both positive and negative membranes, which we demonstrated experimentally had the same average surface potential. All our experimental results with probes, including those obtained on membranes in the gel rather than in the liquid-crystalline state, agreed with the predictions of the GCS theory rather than with the discreteness-of-charge theory. A simple calculation indicates that the agreement between the experimental results and the predictions of the GCS theory could be due to the finite size of the lipids.  相似文献   

2.
Two spin-labeled derivatives of the hydrophobic anion trinitrophenol have been synthesized and characterized in lipid vesicles. In the presence of lipid vesicles, the electron paramagnetic resonance (EPR) spectra of these probes are a composite of both membrane-bound and aqueous populations; as a result, the membrane-aqueous partitioning can be determined from their electron paramagnetic resonance spectra. The effect of transmembrane potentials on the membrane-aqueous partitioning of these spin-labeled hydrophobic ions was examined in phosphatidylcholine vesicles formed by extrusion. Inside positive membrane potentials promote an increase in the binding of these probes that is quantitatively accounted for by a simple thermodynamic model used previously to describe the partitioning of paramagnetic phosphonium ions. The transmembrane migration rates of these ions are dependent on the dipole potential, indicating that these ions transit the membrane in a charged form. The partitioning of the probe is also sensitive to the membrane surface potential, and this dependence is accurately accounted for using the Gouy-Chapman Stern formalism. As a result of the membrane dipole potential, these probes exhibit a stronger binding and a more rapid transmembrane migration rate compared with positive hydrophobic ion spin labels and provide a new set of negatively charged hydrophobic ion probes to investigate membrane electrostatics.  相似文献   

3.
S T Swanson  D Roise 《Biochemistry》1992,31(25):5746-5751
The binding of a synthetic mitochondrial presequence to large, negatively charged, unilamellar vesicles and to unenergized yeast mitochondria has been measured. The presequence, which corresponds to the amino-terminal 25 residues of the yeast cytochrome oxidase subunit IV precursor, was labeled with a fluorescent probe and used to examine the importance of the surface potentials of membranes on the interactions with the presequence. Binding of the fluorescent presequence to the membranes was determined by measuring a decrease in the fluorescence emission of the bound presequence. Binding both to the vesicles and to the mitochondria could be described as a simple partitioning of the presequence between the aqueous and lipid phases. The partitioning was found to depend on the ionic strength of the medium, and the Gouy-Chapman theory could be used to describe the partitioning at various ionic strengths. Application of the theory allowed the determination of an apparent charge on the presequence (+2.31 +/- 0.25), salt-independent apparent partition coefficients for vesicles (99 +/- 84 M-1) and for unenergized mitochondria (14.5 +/- 3.6 L g-1), and an estimated charge density for the mitochondrial outer membrane (-0.0124 +/- 0.0016 C m-2). This study shows that electrostatic effects are significant for the binding of a mitochondrial presequence both to lipid vesicles and to mitochondria, the natural target membrane of the presequence. The accumulation of positively charged presequences at the negative mitochondrial surface and the subsequent partitioning of the presequences directly into the mitochondrial outer membrane probably represent early steps in the translocation of precursor proteins into mitochondria.  相似文献   

4.
The partitioning of the wasp venom peptide mastoparan-X (MPX) into neutral and negatively charged lipid membranes has been compared with two new synthetic analogs of MPX where the Nα-terminal of MPX was acylated with propanoic acid (PA) and octanoic acid (OA). The acylation caused a considerable change in the membrane partitioning properties of MPX and it was found that the shorter acylation with PA gave improved affinity and selectivity toward negatively charged membranes, whereas OA decreased the selectivity. Based on these findings, we hypothesize that minor differences in the embedding and positioning of the peptide in the membrane caused by either PA or OA acylation play a critical role in the fine-tuning of the effective charge of the peptide and thereby the fine-tuning of the peptide's selectivity between neutral and negatively charged lipid membranes. This finding is unique compared to previous reports where peptide acylation enhanced membrane affinity but also resulted in impaired selectivity. Our result may provide a method of enhancing selectivity of antimicrobial peptides toward bacterial membranes due to their high negative charge—a finding that should be investigated for other, more potent antimicrobial peptides in future studies.  相似文献   

5.
The effects of merocyanine 540 on the electrical properties of lipid bilayer membranes have been investigated. The alterations this dye was found to produce in the intrinsic conductances of these membranes were minimal, but it profoundly altered the conductances produced by extrinsic permeant species. These alterations were much larger for neutral membranes than for negatively charged ones. The dye increased the conductances mediated by positively charged permeant species and decreased those by negatively charged permeant species, suggesting that it produces a negative electrostatic potential on the membrane; it also altered the kinetics and the voltage dependencies of permeation by these charge carriers. The magnitudes of dye-mediated conductance changes were much larger for positively charged permeants than for negatively charged ones; also, changes in ionic strength altered these dye effects in opposite directions from those predicted by the Stern equation, and the dependence of the conductance alteration on dye concentration was steeper than that predicted by this equation. Finally, only very small changes in liposome zeta potentials were induced by the dye. Calculations show that a large fraction of these effects can be accounted for by the dipole potential produced by merocyanine at the membrane surface, but that additional effects of the dye must be postulated as well.  相似文献   

6.
A lipid transfer protein that facilitates the transfer of glycolipids between donor and acceptor membranes has been investigated using a fluorescence resonance energy transfer assay. The glycolipid transfer protein (23-24 kDa, pI 9.0) catalyzes the high specificity transfer of lipids that have sugars beta-linked to either a ceramide or a diacylglycerol backbone, such as simple glycolipids and gangliosides, but not the transfer of phospholipids, cholesterol, or cholesterol esters. In this study, we examined the effect of different charged lipids on the rate of transfer of anthrylvinyl-labeled galactosylceramide (1 mol %) from a donor to acceptor vesicle population at neutral pH. Compared to neutral donor vesicle membranes, introduction of negatively charged lipid at 5 or 10 mol % into the donor vesicles significantly decreased the transfer rate. Introduction of the same amount of negative charge into the acceptor vesicle membrane did not impede the transfer rate as effectively. Also, positive charge in the donor vesicle membrane was not as effective at slowing the transfer rate as was negative charge in the donor vesicle. Increasing the ionic strength of the buffer with NaCl significantly reversed the charge effects. At neutral pH, the transfer protein (pI congruent with 9.0) is expected to be positively charged, which may promote association with the negatively charged donor membrane. Based on these and other experiments, we conclude that the transfer process follows first-order kinetics and that the off-rate of the transfer protein from the donor vesicle surface is the rate-limiting step in the transfer process.  相似文献   

7.
Amyloids are proteinaceous aggregates related to the so‐called conformational diseases, such as Alzheimer's and prion diseases. The cytotoxicity of amyloids may be related to the interaction of the amiloidogenic peptides or proteins with the cell membrane. In order to gain information on the physico‐chemical effects of amyloids on membranes, we have studied the interaction of the human prion amyloidogenic fragment PrP 185–206 with negatively charged model membranes. The results show that the peptide causes the destabilization of the membrane, making it permeable to potassium ions and to charged organic compounds. This effect correlates with the interaction of the peptide with the membrane, causing a variation in the magnitude of the electrostatic surface and dipole membrane potentials. This effect on the electrostatic properties of the membranes may help explaining the observed permeability: a neutralization of the surface negative charge and a decrease of the inside‐positive dipole potential would facilitate the translocation of positive ions. The structural analysis of the peptide in the presence of model membranes reveals that it adopts a predominantly unordered structure without any signs of amyloid formation. The results may be relevant in relation to the recently described cell toxic capacity of the peptide. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Ultrafiltration is used to remove small impurities from a variety of processing streams. However, the clearance of small charged impurities may be inadequate due to electrostatic exclusion by the charged ultrafiltration membranes, an effect that has been largely unappreciated. Ultrafiltration experiments were performed to evaluate the transmission of several model impurities with different electrical charge through ultrafiltration membranes having different surface charge characteristics. Highly charged impurities are strongly rejected by charged cellulose and polyethersulfone membranes even though these solutes are much smaller than the membrane pore size. These effects could be eliminated by using high ionic strength solutions to shield the electrostatic interactions. The sieving data are in good agreement with model calculations based on the partitioning of charged spheres into charged cylindrical pores. Guidelines are developed for estimating conditions needed to obtain effective removal of small charged impurities through charged ultrafiltration membranes.  相似文献   

9.
The effects of neuraminidase treatment on the membrane surface charge density and/or membrane potential of the porcine intestinal brush-border membrane vesicles were studied by using three fluorescent dyes, 1,6-diphenyl-1,3,5-hexatriene (DPH), 1-anilino-8-naphthalene sulfonate (ANS), and 3,3'-dipropyl-2,2'-thiadicarbocyanine iodide (DiS-C3(5]. The results of quenching studies of DPH-labeled membranes using cationic (T1+) and anionic (I-) quenchers suggested an increase of negative charge on the membrane surface by desialylation upon neuraminidase treatment. This interpretation was further supported by a decrease of ANS-binding affinity of the membranes after treatment with the enzyme. In addition, the degree of valinomycin-induced fluorescence change of DiS-C3(5)-probed membranes in the presence of various concentrations of KCl was reduced by treatment of the membranes with neuraminidase. This suggests that penetration of the dye molecules into the vesicle interior is facilitated by the treatment. The membrane potentials estimated from the null point of valinomycin-induced changes in the DiS-C3(5) fluorescence of the control and neuraminidase-treated membranes were -25 to -29.7 and -40 to -48.8 mV, respectively. From these results, it is suggested that the membrane surface charge density and/or membrane potential of the intestinal brush-border membranes are susceptible to modification of carbohydrate moieties on the membrane surface by neuraminidase treatment.  相似文献   

10.
Influence of charge and molecular size on membrane stabilization   总被引:1,自引:0,他引:1  
We have reported that the antihaemolytic effect of low concentrations of chlorpromazine is decreased after enzymic removal of sialopeptides from red cell membranes, suggesting that an interaction between negatively charged sialic acids and positively charged chlorpromazine is involved in its membrane stabilizing effect. We have now investigated the antihaemolytic action of simpler molecules with different charges Removal of membrane sialopeptides did not affect the membrane stabilizing actions of simple aliphatic mono- or diamines nor of similar aliphatic molecules carrying strong positive or negative charges, where those positively charged were more potent than those with negative charges. It appears, therefore, that membrane stabilizing activity is determined primarily by lipophilicity and secondarily by polarity and that it does not depend on interactions with enzymically accessible sialopeptides on the outer surface of biological membranes.  相似文献   

11.
The surface charge of brain endothelial cells forming the blood-brain barrier (BBB) is highly negative due to phospholipids in the plasma membrane and the glycocalyx. This negative charge is an important element of the defense systems of the BBB. Lidocaine, a cationic and lipophilic molecule which has anaesthetic and antiarrhytmic properties, exerts its actions by interacting with lipid membranes. Lidocaine when administered intravenously acts on vascular endothelial cells, but its direct effect on brain endothelial cells has not yet been studied. Our aim was to measure the effect of lidocaine on the charge of biological membranes and the barrier function of brain endothelial cells. We used the simplified membrane model, the bacteriorhodopsin (bR) containing purple membrane of Halobacterium salinarum and culture models of the BBB. We found that lidocaine turns the negative surface charge of purple membrane more positive and restores the function of the proton pump bR. Lidocaine also changed the zeta potential of brain endothelial cells in the same way. Short-term lidocaine treatment at a 10 μM therapeutically relevant concentration did not cause major BBB barrier dysfunction, substantial change in cell morphology or P-glycoprotein efflux pump inhibition. Lidocaine treatment decreased the flux of a cationic lipophilic molecule across the cell layer, but had no effect on the penetration of hydrophilic neutral or negatively charged markers. Our observations help to understand the biophysical background of the effect of lidocaine on biological membranes and draws the attention to the interaction of cationic drug molecules at the level of the BBB.  相似文献   

12.
Summary Bilayer membranes were prepared with the negatively charged lipids phosphatidylglycerol and diphosphatidylglycerol, the positively charged lipid lysyl phosphatidylglycerol, the zwitterionic lipid phosphatidylethanolamine, and an uncharged glycolipid, diglucosyldiglyceride, all isolated from gram-positive bacteria. Bilayer membranes of all these lipids manifested specific resistances of 107 to 109 cm2 and capacitances of 0.3 to 0.4 F cm–2. The membrane potentials of these bilayers were measured as a function of the sodium chloride, potassium chloride, and hydrogen chloride transmembrane concentration gradients (0.01 to 0.10m) and were found to be linear with the logarithm of the salt activity gradients. Membranes made from lysyl phosphatidylglycerol (one net positive charge) were almost completely chloride selective, whereas membranes from phosphatidylglycerol and diphosphatidylglycerol (one and two net negative charges, respectively) were highly cation selective. Membranes prepared with either diglucosyldiglyceride or phosphatidylethanolamine showed only slight cation selectivity. These findings indicate that the charge on the polar head group of membrane lipids plays an important role in controlling the ion-selective permeability of the bilayer.  相似文献   

13.
Although several recent studies have demonstrated the importance of electrostatic interactions in ultrafiltration, there have been few quantitative studies of the effects of membrane charge density on protein transport and membrane hydraulic permeability. Data were obtained using a series of charge-modified cellulose membranes, with the surface charge density controlled by varying the extent of addition of a quaternary amine functionality. The membrane charge was evaluated from streaming potential measurements. Protein transmission decreased by a factor of 100 as the membrane zeta potential increased from 0.3 to 6.6 mV. The protein sieving data were in good agreement with a partitioning model accounting for electrostatic effects, while the hydraulic permeability data were consistent with a flow model accounting for the effects of counter-electroosmosis. The results provide the first quantitative analysis of the effects of membrane charge density on the performance of ultrafiltration membranes.  相似文献   

14.
Albumin is supposed to be the major antioxidant circulating in blood. This study examined the prevention of membrane lipid peroxidation by bovine serum albumin (BSA). Lipid peroxidation was induced by the exposing of enzymatically generated superoxide radicals to egg yolk phosphatidylcholine liposomes incorporating lipids with different charges in the presence of chelated iron catalysts. We used three kinds of Fe3+-chelates, which initiated reactions that were dependent on membrane charge: Fe3+-EDTA and Fe3+-EGTA catalyzed peroxidation in positively and negatively charged liposomes, respectively, and Fe3+-NTA, a renal carcinogen, catalyzed the reaction in liposomes of either charge. Fe3+-chelates initiated more lipid peroxidation in liposomes with increased zeta potentials, followed by an increase of their availability for the initiation of the reaction at the membrane surface. BSA inhibits lipid peroxidation by preventing the interaction of iron chelate with membranes, followed by a decrease of its availability in a charge-dependent manner depending on the iron-chelate concentration: one is accompanied and the other is unaccompanied by a change in the membrane charge. The inhibitory effect of BSA in the former at high concentrations of iron chelate would be attributed to its electrostatic binding with oppositely charged membranes. The inhibitory effect in the latter at low concentrations of iron chelate would be caused by BSA binding with iron chelates and keeping them away from membrane surface where lipid peroxidation is initiated. Although these results warrant further in vivo investigation, it was concluded that BSA inhibits membrane lipid peroxidation by decreasing the availability of iron for the initiation of membrane lipid peroxidation, in addition to trapping active oxygens and free radicals.  相似文献   

15.
Summary Although hydrophobic forces probably dominate in determining whether or not a protein will insert into a membrane, recent studies in our laboratory suggest that electrostatic forces may influence the final orientation of the inserted protein. A negatively charged hepatic receptor protein was found to respond totrans-positive membrane potentials as though electrophoresing into the bilayer. In the presence of ligand, the protein appeared to cross the membrane and expose binding sites on the opposite side. Similarly, a positively charged portion of the peptide melittin crosses a lipid membrane reversibly in response to atrans-negative potential. These findings, and others by Date and co-workers, have led us to postulate that transmembrane proteins would have hydrophobic transmembrane segments bracketed by positively charged residues on the cytoplasmic side and negatively charged residues on the extra-cytoplasmic side. In the thermodynamic sense, these asymmetrically placed charge clusters would create a compelling preference for correct orientation of the protein, given the inside-negative potential of most or all cells. This prediction is borne out by examination of the few transmembrane proteins (glycophorin, M13 coat protein, H-2Kb, HLA-A2, HLA-B7, and mouse Ig heavy chain) for which we have sufficient information on both sequence and orientation.In addition to the usual diffusion and pump potentials measurable with electrodes, the microscopic membrane potential reflects surface charge effects. Asymmetries in surface charge arising from either ionic or lipid asymmetries would be expected to enhance the bias for correct protein orientation, at least with respect to plasma membranes. We introduce a generalized form of Stern equation to assess surface charge and binding effects quantitatively. In the kinetic sense, dipole potentials within the membrane would tend to prevent positively charged residues from crossing the membrane to leave the cytoplasm. These considerations are consistent with the observed protein orientations. Finally, the electrostatic and hydrophobic factors noted here are combined in two hypothetical models of translocation, the first involving initial interaction of the presumptive transmembrane segment with the membrane; the second assuming initial interaction of a leader sequence.  相似文献   

16.
The interaction of interrelated model peptides with model membranes has been studied by techniques based on tryptophan fluorescence. The peptides used are derivatives of the sequence H-Ala-Met-Leu-Trp-Ala-OH, which was designed for this purpose. Several modifications yielded a set of 13 penta- and hexapeptides varying in net charge, hydrophobicity, charge distribution, and the intramolecular position of the tryptophan residue with respect to the charge(s). The affinity of these peptides for small unilamellar vesicles (SUV) consisting of zwitterionic egg phosphatidylcholine (eggPC) and negatively charged beef heart cardiolipin (bhCL) has been investigated in a comparative way. The criteria for affinity comprise (1) intrinsic fluorescence changes upon titration of the peptides with the lipid vesicles, (2) reduced accessibility of the peptides to aqueous quenchers of tryptophan fluorescence (I- and acrylamide) in the presence of lipid, and (3) exposure to membrane-incorporated fluorescence quenchers, brominated phosphatidylcholines (BrPC). Application of BrPC brominated at different positions along the acyl chains provided information on the membrane topology of the peptides. With respect to the extent of affinity for zwitterionic membranes, the overall hydrophobicity of the peptides is the main determinant. A comparison of the affinity for PC of equally hydrophobic peptides carrying either a single positive or negative charge reveals preferential interaction of the cationic peptide. Both hydrophobic and electrostatic interactions determine the affinity of positively charged mono- and divalent peptides for CL vesicles. The distribution of the charged moieties in divalent positively charged peptides, either both at one end of the molecule or one at each end, has little influence on the affinity of these peptides for CL but does affect the extent of exposure to BrPC. Upon decreasing the surface charge density of the vesicles by diluting CL with increasing amounts of PC, both types of peptides show different behavior. The position of the tryptophan relative to the charged moiety in the peptide molecule is shown to affect the fluorescent properties upon interaction with vesicles. Concerning the membrane topology, all peptides adopt a localization near the membrane surface, with the neutral peptides inserting slightly deeper into the bilayer than the charged peptides. The results allow a comparative analysis of the factors determining the extents and modes of lipid-model peptide interaction; in addition, the validity of the methods applied is discussed.  相似文献   

17.
Summary A comparative study of the charge transport kinetics of oppositely charged lipophilic probe ions in lipid bilayer membranes of varying composition was carried out by using the charge pulse technique. The ions investigated were the chemical analogs tetraphenylborate, tetraphenylarsonium and tetraphenylphosphonium. Membrane structural aspects investigated were the type of solvent used in membrane formation, sterol content, and the nature of the principal lipid. The overall results indicate that the character of the transport process involving positive lipophilic probes is, in contrast to positively charged carrier complexes, very similar to that deduced in previous studies of negative lipophilic ions. The major effect on transport of lipophilic ions of both signs using differentn-alkane solvents appears to be due to changes in the thickness of the membrane hydrocarbon region. Positive ion transport is relatively sensitive to the inclusion of sterols of several types in both monoolein and lecithin membranes, as compared with negative ion transport, suggesting that a combination of sterol-induced dipolar field and fluidity changes are involved. Results involving several variations in lipid structure, with the possible exception of hydrocarbon tail saturation, when interpreted in terms of dipolar field changes deduced under the assumption of charge independent fluidity effects, are consistent with monolayer surface potential measurements.  相似文献   

18.
We have studied the effects of membrane surface charge on Na+ ion permeation and Ca2+ block in single, batrachotoxin-activated Na channels from rat brain, incorporated into planar lipid bilayers. In phospholipid membranes with no net charge (phosphatidylethanolamine, PE), at low divalent cation concentrations (approximately 100 microM Mg2+), the single channel current-voltage relation was linear and the single channel conductance saturated with increasing [Na+] and ionic strength, reaching a maximum (gamma max) of 31.8 pS, with an apparent dissociation constant (K0.5) of 40.5 mM. The data could be approximated by a rectangular hyperbola. In negatively charged bilayers (70% phosphatidylserine, PS; 30% PE) slightly larger conductances were observed at each concentration, but the hyperbolic form of the conductance-concentration relation was retained (gamma max = 32.9 pS and K0.5 = 31.5 mM) without any preferential increase in conductance at lower ionic strengths. Symmetrical application of Ca2+ caused a voltage-dependent block of the single channel current, with the block being greater at negative potentials. For any given voltage and [Na+] this block was identical in neutral and negatively charged membranes. These observations suggest that both the conduction pathway and the site(s) of Ca2+ block of the rat brain Na channel protein are electrostatically isolated from the negatively charged headgroups on the membrane lipids.  相似文献   

19.
The juxtamembrane domain of vesicle-associated membrane protein (VAMP) 2 (also known as synaptobrevin2) contains a conserved cluster of basic/hydrophobic residues that may play an important role in membrane fusion. Our measurements on peptides corresponding to this domain determine the electrostatic and hydrophobic energies by which this domain of VAMP2 could bind to the adjacent lipid bilayer in an insulin granule or other transport vesicle. Mutation of residues within the juxtamembrane domain that reduce the VAMP2 net positive charge, and thus its interaction with membranes, inhibits secretion of insulin granules in β cells. Increasing salt concentration in permeabilized cells, which reduces electrostatic interactions, also results in an inhibition of insulin secretion. Similarly, amphipathic weak bases (e.g., sphingosine) that reverse the negative electrostatic surface potential of a bilayer reverse membrane binding of the positively charged juxtamembrane domain of a reconstituted VAMP2 protein and inhibit membrane fusion. We propose a model in which the positively charged VAMP and syntaxin juxtamembrane regions facilitate fusion by bridging the negatively charged vesicle and plasma membrane leaflets.  相似文献   

20.
The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号