首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human hair keratins have a strong potential for development as clinically relevant biomaterials because they are abundant and bioactive and are a realistic source of autologous proteins. Specifically, keratins have the propensity to polymerize in an aqueous environment to form hydrogels. In order to evaluate the suitability of keratin hydrogels as substrates for cell culture, we have fabricated hydrogels using keratins extracted from human hair by inducing polymerization with Ca2+; these hydrogels exhibit highly branched and porous micro-architectures. L929 murine fibroblasts have been used in a preliminary cell culture study to compare the in vitro biocompatibility of the keratin hydrogels with collagen type 1 hydrogels of similar viscoelastic properties. Our results reveal that keratin hydrogels are comparable with collagen hydrogels in terms of the promotion of cell adhesion, proliferation and the preservation of cell viability. Interestingly, cells remain clustered in proliferative colonies within the keratin hydrogels but are homogeneously distributed as single cells in collagen hydrogels. Collectively, our results demonstrate that keratin hydrogels can be used as substrates for cell culture. Such gels might find applications as templates for soft tissue regeneration.  相似文献   

2.
A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt sensitivities of hydrogels were further studied, and the prepared hydrogels showed extremely sensitive properties to pH, temperature, the ionic salts kinds and concentration. The results of controlled drug release behaviors of the hydrogels revealed that the introduction of IPN observably improved the drug release properties of hydrogels, the release rate of drug from hydrogels can be controlled by the structure of the hydrogels and pH value of the external environment, a relative large amount of drug released was preferred under simulated intestinal fluid. These results illustrated high potential of the KPAsp/CMCTS IPN hydrogels for application as drug carriers.  相似文献   

3.
This study investigated osteogenesis of human mesenchymal stem cells encapsulated in matrix-metalloproteinase (MMP)-sensitive poly(ethylene glycol) (PEG) hydrogels in chemically defined medium (10 ng/ml bone morphogenic factor-2). Thiol-norbornene photoclick hydrogels were formed with CRGDS and crosslinkers of PEG dithiol (nondegradable), CVPLS-LYSGC (P1) or CRGRIGF-LRTDC (P2; dash indicates cleavage site) at two crosslink densities. Exogenous MMP-2 degraded P1 and P2 hydrogels similarly. MMP-14 degraded P1 hydrogels more rapidly than P2 hydrogels. Cell spreading was greatest in P1 low crosslinked hydrogels and to a lesser degree in P2 low crosslinked hydrogels, but not evident in nondegradable and high crosslinked MMP-sensitive hydrogels. Early osteogenesis (Alkaline phosphatase [ALP] activity) was accelerated in hydrogels that facilitated cell spreading. Contrarily, late osteogenesis (mineralization) was independent of cell spreading. Mineralized matrix was present in P1 hydrogels, but only present in P2 high crosslinked hydrogels and not yet present in nondegradable hydrogels. Overall, the low crosslinked P1 hydrogels exhibited an accelerated early and late osteogenesis with the highest ALP activity (Day 7), greatest calcium content (Day 14), and greatest collagen content (Day 28), concomitant with increased compressive modulus over time. Collectively, this study demonstrates that in chemically defined medium, hydrogel degradability is critical to accelerating early osteogenesis, but other factors are important in late osteogenesis.  相似文献   

4.
Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.  相似文献   

5.
Shih H  Lin CC 《Biomacromolecules》2012,13(7):2003-2012
Thiol-ene photoclick hydrogels have been used for a variety of tissue engineering and controlled release applications. In this step-growth photopolymerization scheme, four-arm poly(ethylene glycol) norbornene (PEG4NB) was cross-linked with dithiol containing cross-linkers to form chemically cross-linked hydrogels. While the mechanism of thiol-ene gelation was well described in the literature, its network ideality and degradation behaviors are not well-characterized. Here, we compared the network cross-linking of thiol-ene hydrogels to Michael-type addition hydrogels and found thiol-ene hydrogels formed with faster gel points and higher degree of cross-linking. However, thiol-ene hydrogels still contained significant network nonideality, demonstrated by a high dependency of hydrogel swelling on macromer contents. In addition, the presence of ester bonds within the PEG-norbornene macromer rendered thiol-ene hydrogels hydrolytically degradable. Through validating model predictions with experimental results, we found that the hydrolytic degradation of thiol-ene hydrogels was not only governed by ester bond hydrolysis, but also affected by the degree of network cross-linking. In an attempt to manipulate network cross-linking and degradation of thiol-ene hydrogels, we incorporated peptide cross-linkers with different sequences and characterized the hydrolytic degradation of these PEG-peptide hydrogels. In addition, we incorporated a chymotrypsin-sensitive peptide as part of the cross-linkers to tune the mode of gel degradation from bulk degradation to surface erosion.  相似文献   

6.
Hemicellulose-based hydrogels were prepared by radical polymerization of 2-hydroxyethyl methacrylate or poly(ethylene glycol) dimethacrylate with oligomeric hydrosoluble hemicellulose modified with well-defined amounts of methacrylic functions. The polymerization reaction was carried out in water at 40 degrees C using a redox initiator system. The hydrogels were in general elastic, soft, and easily swellable in water. Their viscoelastic properties were determined by oscillatory shear measurements on 2 mm thick hydrogels under a slight compression to avoid slip, over the frequency range 10(-1) to 10(2). The rheological characterization indicated that the elastic response of the hydrogels was stronger than the viscous response, leading to the conclusion that the hydrogel systems displayed a predominantly solid-like behavior. The curves showed an increase in shear storage modulus with increasing cross-linking density. The nature of the synthetic comonomer in the hemicellulose-based hydrogels also influenced the shear storage modulus. Comparison of hemicellulose-based hydrogels with pure poly(2-hydroxyethyl methacrylate) hydrogels showed that their behaviors were rather similar, demonstrating that the synthetic procedure made it possible to prepare hemicellulose-based hydrogels with properties similar to those of pure poly(2-hydroxyethyl methacrylate) hydrogels.  相似文献   

7.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   

8.
Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N′-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA–TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.  相似文献   

9.
Novel biodegradable poly(ethylene glycol) (PEG) based hydrogels, namely, PEG sebacate diacrylate (PEGSDA) were synthesized, and their properties were evaluated. Chemical structures of these polymers were confirmed by Fourier transform infrared and proton nuclear magnetic resonance (1H NMR) spectroscopy. After photopolymerization, the dynamic shear modulus of the hydrogels was up to 0.2 MPa for 50% PEGSDA hydrogel, significantly higher than conventional hydrogels such as PEG diacrylate (PEGDA). The swelling ratios of these macromers were significantly lower than PEGDA. The in vitro degradation study demonstrated that these hydrogels were biodegradable with weight losses about 66% and 32% for 25% and 50% PEGSDA after 8 weeks of incubation in phosphate-buffered saline at 37 degrees C. In vitro biocompatibility was assessed using cultured rat bone marrow stromal cells (MSCs) in the presence of unreacted monomers or degradation products. Unlike conventional PEGDA hydrogels, PEGSDA hydrogel without RGD peptide modification induced MSC cell adhesion similar to tissue culture polystyrene. Finally, complex three-dimensional structures of PEGSDA hydrogels using solid free form technique were fabricated and their structure integrity was better maintained than PEGDA hydrogels. These hydrogels may find use as scaffolds for tissue engineering applications.  相似文献   

10.
水凝胶是一类广泛溶涨于水 ,呈三维网状结构的聚合物具有很高的生物相容性 ,广泛地用于生物材料 ,如眼球的晶状体、人造脏器以及人造皮肤等。高含水量的水凝胶不利于细胞粘附 ,研究能使细胞粘附并生长的水凝胶是开发其在组织工程材料领域应用的关键 ,细胞易于粘附的水凝胶可用于细胞培养基材和组织工程移植支架材料。一般来说 ,由于细胞表面带有负电荷 ,带正电荷的基材表面 (如 ,多熔素 (Polyl ysine) )有利于细胞粘附 ,而带有酸性或中性基团的材料不利于细胞粘附[1 ] ,而且带高负电荷密度的基材会导致细胞新陈代谢的紊乱并抑制细…  相似文献   

11.
Peptide RATEA16 spontaneously self-assembled into higher-order nanofiber hydrogels with extremely high water content (>99.5% (wt/vol)) under physiological condition. The hydrogels could undergo pH-reversible transitions from viscous solution to elastic hydrogel and to precipitate. The supramolecular self-assembly and the three phase transitions are driven by hydrophobic interactions, intermolecular hydrogen bonds, and a combination of attractive or repulsive electrostatic interactions. These hydrogels are rich in beta-sheet nanofibers, as demonstrated by CD and FTIR data. Rheological measurements reveal that the viscoelasticity of the material can be tuned by environmental pH and peptide concentration. The storage modulus of the hydrogels increases with increasing peptide concentration, and the self-assembled hydrogels are able to recover from mechanical breakdowns. AFM images show that the elasticity is attributed to a network nanostructure consisting of fibrous self-assemblies. The hydrogels are promising for a variety of possible biomedical applications, including drug delivery.  相似文献   

12.
Photo-cross-linkable oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels have been developed for use in tissue engineering applications. We demonstrated that compressive modulus of these hydrogels increased with increasing polymer concentration, and hydrogels with different mechanical properties were formed by altering the ratio of cross-linker/polymer in precursor solution. Conversely, swelling of hydrogels decreased with increasing polymer concentration and cross-linker/polymer ratio. These hydrogels are degradable and degradation rates vary with the change in cross-linking level. Chondrocyte attachment was quantified as a method for evaluating adhesion of cells to the hydrogels. These data revealed that cross-linking density affects cell behavior on the hydrogel surfaces. Cell attachment was greater on the samples with increased cross-linking density. Chondrocytes on these samples exhibited spread morphology with distinct actin stress fibers, whereas they maintained their rounded morphology on the samples with lower cross-linking density. Moreover, chondrocytes were photoencapsulated within various hydrogel networks. Our results revealed that cells encapsulated within 2-mm thick OPF hydrogel disks remained viable throughout the 3-week culture period, with no difference in viability across the thickness of hydrogels. Photoencapsulated chondrocytes expressed the mRNA of type II collagen and produced cartilaginous matrix within the hydrogel constructs after three weeks. These findings suggest that photo-cross-linkable OPF hydrogels may be useful for cartilage tissue engineering and cell delivery applications.  相似文献   

13.
Cai L  Lu J  Sheen V  Wang S 《Biomacromolecules》2012,13(5):1663-1674
Recently, we have developed a photopolymerizable poly(L-lysine) (PLL) that can be covalently incorporated into poly(ethylene glycol) diacrylate (PEGDA) hydrogels to improve their bioactivity by providing positive charges. To explore the potential of these PLL-grafted PEGDA hydrogels as a cell delivery vehicle and luminal filler in nerve guidance conduits for peripheral and central nerve regeneration, we varied the number of pendent PLL chains in the hydrogels by photo-cross-linking PEGDA with weight compositions of PLL (φ(PLL)) of 0, 1, 2, 3, and 5%. We further investigated the effect of PLL grafting density on E14 mouse neural progenitor cell (NPC) behavior including cell viability, attachment, proliferation, differentiation, and gene expression. The amount of actually grafted PLL and charge densities were characterized, showing a proportional increase with the feed composition φ(PLL). NPC viability in 3D hydrogels was significantly improved in a PLL grafting density-dependent manner at days 7 and 14 postencapsulation. Similarly, NPC attachment and proliferation were promoted on the PLL-grafted hydrogels with increasing φ(PLL) up to 2%. More intriguingly, NPC lineage commitment was dramatically altered by the amount of grafted PLL chains in the hydrogels. NPC differentiation demonstrated a parabolic or nonmonotonic dependence on φ(PLL), resulting in cells mostly differentiated toward mature neurons with extensive neurite formation and astrocytes rather than oligodendrocytes on the PLL-grafted hydrogels with φ(PLL) of 2%, whereas the neutral hydrogels and PLL-grafted hydrogels with higher φ(PLL) of 5% support NPC differentiation less. Gene expression of lineage markers further illustrated this trend, indicating that PLL-grafted hydrogels with an optimal φ(PLL) of 2% could be a promising cell carrier that promoted NPC functions for treatment of nerve injuries.  相似文献   

14.
Spontaneously forming hydrogels composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymers, poly(MPC-co-methacrylic acid) (PMA), and poly(MPC-co-n-butyl methacrylate) (PMB) were examined. The MPC copolymer hydrogel was observed to have a spontaneous gelation property. To determine the properties of the hydrogels and why the gelation takes place, we have studied the properties of the hydrogels by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC). The morphologies of the hydrogels were spongelike with a homogeneous structure. By XPS analysis in terms of the molecular distributions in the hydrogels, it was observed that a stabilization time was required for the hydrogel to undergo chain rearrangement. DSC thermograms of the hydrogels were different from their components, PMA and PMB. For the hydrogel, a crystallization peak around -30 degrees C was observed. This result indicated that some ordered structures existed in the hydrogels. To determine the role of the MPC groups, aqueous solutions of poly(methacrylic acid) (PMAc) and PMB were mixed. The mixture of PMAc-PMB turned into a sol state, and the sol state remained for a week. When the mixture was cooled, a very weak hydrogel was prepared. This result suggested that the MPC groups were the dominant unit for spontaneously forming the hydrogels.  相似文献   

15.
G He  Z Wang  H Zheng  Y Yin  X Xiong  R Lin 《Carbohydrate polymers》2012,90(4):1614-1619
Aminoethyl chitins (AEC) with different amino contents were synthesized from chitin and 2-chlorethylamine hydrochloride, and the AEC hydrogels were prepared by crosslinking with glutaraldehyde. The microstructures, swelling behaviors and antibacterial activities of the hydrogels were investigated. The results of Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance ((1)H NMR) spectrum and scanning electron microscopy (SEM) showed that the hydrogels were prepared by forming the Schiff base from AEC and glutaraldehyde. The aminoethyl chitin hydrogels were sensitive to acidic environment. The swelling ratio changed with the amino content of AEC, declined with the increase of the crosslinking agent concentration and increased with the increase of the AEC concentration. In addition, the antibacterial results of the hydrogels against Staphylococcus aureus (S. aureus) indicated that the hydrogels had good antibacterial activities, and the antibacterial properties were affected by the amino content of AEC and the crosslinking agent concentration.  相似文献   

16.
This report investigates the rheological properties of cross-linked, thiol-functionalized HA (HA-DTPH) hydrogels prepared by varying the concentration and molecular weight (MW) of the cross-linker, poly(ethylene glycol) diacrylate (PEGDA). Hydrogels were subsequently cured for either short-term (hours) or long-term (days) and subjected to oscillatory shear rheometry (OSR). OSR allows the evaluation and comparison of the shear storage moduli (G'), an index of the total number of effective cross-links formed in the hydrogels. While the oscillatory time sweep monitored the evolution of G' during in situ gelation, the stress and frequency sweeps measured the G' of preformed and subsequently cured hydrogels. From stress sweeps, we found that, for the hydrogels, G' scaled linearly with PEGDA concentration and was independent of its MW. Upon comparison with the classical Flory's theory of elasticity, stress sweep tests on short-term cured hydrogels revealed the simultaneous, but gradual, formation of spontaneous disulfide cross-links in the hydrogels. Results from time and frequency sweeps suggested that the formation of a stable, three-dimensional network depended strictly on PEGDA concentration. Results from the equilibrium swelling of hydrogels concurred with those obtained from oscillatory stress sweeps. Such a detailed rheological characterization of our HA-DTPH-PEGDA hydrogels will aid in the design of biomaterials targeted for biomedical or pharmaceutical purposes, especially in applications involving functional tissue engineering.  相似文献   

17.
To remove lipopolysaccharide (LPS) from pure water, we developed polymer hydrogels that selectively recognize LPS. A molecular imprinting technique was used to prepare the polymer hydrogels. We prepared the polymer hydrogels with LPS-binding sites by using acryloyllysine and acryloylphenylalanine as functional monomers and used lipid A as a template because it is the biologically active part of LPS and contains two phosphate groups. Co-existence of n-octane during the polymerization process was highly effective in promoting the formation of LPS-accessible sites on the surface of the hydrogels. Both an electrostatic and a hydrophobic interaction between the lipid A portion of LPS and the recognition site of the imprinted hydrogel are necessary for LPS recognition. The adsorption isotherm of LPS to the lipid A-imprinted hydrogels was Langmuir-type; the saturated adsorption capacity and the adsorption constant, calculated by applying an equation for Langmuir-type adsorption isotherms, were 1.0×10(-11)mol/cm(2) and 2.5×10(5)M(-1), respectively. The imprinted hydrogels selectively recognized toxic LPS in a competition experiment in which two other kinds of LPS with similar chemical structures to that of the LPS of E. coli (toxic LPS) were adsorbed to the lipid A-imprinted hydrogels.  相似文献   

18.
Biocompatible interpenetration polymeric network (IPN) hydrogels based on chitosan with N-vinylpyrrolidinone (NVP) as well as its copolymer with 2-hydroxymethyl methacrylate (HEMA) were synthesised using the photopolymerisation technique without the inclusion of any photoinitiator or crosslinking agent. These hydrogels were characterised using the Fourier-transform infrared spectroscopy (FTIR) technique. Equilibrium swelling of these hydrogels was performed in Milli-Q water and drug release studies were carried out using theophylline as the model drug. These tests showed that the IPN comprised of chitosan and NVP with a very small amount of N-hydroxymethyl maleimide (HMMI) included exhibited higher swelling abilities and fast drug release rates than the IPN which contained chitosan, NVP and HEMA. Kinetic studies of water diffusion into these hydrogels and drug release revealed that with the exception of the IPN with HEMA incorporated, the other hydrogels did not adhere to the Fickian diffusion model. These hydrogels were tested for their biocompatibility with human epidermal keratinocyte cells (HaCaT). A positive cell growth as evidenced by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) cell proliferation assay indicated that these hydrogels are non-toxic to human keratinocytes and can be potentially used as biomaterials for biomedical applications.  相似文献   

19.
A novel thermosensitive and hydrogel was designed and synthesized by graft copolymerization of N-isopropylacrylamide (NIPAAm) with biodegradable carboxymethylchitosan (CMCS). The influence of the content of CMCS grafted on the properties of the resulted hydrogels was examined. The morphology of the hydrogels was observed by scanning electron microscopy (SEM), their thermal property was characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and deswelling/swelling kinetics upon external temperature changes. In comparison with the conventional PNIPAAm hydrogels, the resulted hydrogels have improved thermosensitive properties, including enlarged water content at room temperature and faster deswelling/swelling rate upon heating. The strategy described here presents a potential alternative to the traditional synthesis techniques for thermosensitive hydrogels.  相似文献   

20.
A series of excellent hydrogels were prepared from poly(vinyl alcohol) (PVA) and carboxymethylated chitosan (CM-chitosan) with electron beam irradiation (EB) at room temperature. Electron spectroscopy analysis of the blend hydrogels revealed that good miscibility was sustained between CM-chitosan and PVA. The properties of the prepared hydrogels, such as the mechanical properties, gel fraction and swelling behavior were investigated. The mechanical properties and equilibrium degree of swelling improved obviously after adding CM-chitosan into PVA hydrogels. The gel fraction determined gravimetrically showed that a part of CM-chitosan was immobilized onto PVA hydrogel. The further analyses of FTIR and DSC spectra of the prepared gels after extracting sol manifested that there was a grafting interaction between PVA and CM-chitosan molecules under irradiation. The antibacterial activity of the hydrogels against Escherichia coli was also measured via optical density method. The blend hydrogels exhibited satisfying antibacterial activity against E. coli, even when the CM-chitosan concentration was only 3 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号