首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fetal bovine ligamentum nuchae fibroblasts maintained in culture synthesized soluble elastin but were unable to form the insoluble elastic fiber. Secreted elastin precursors accumulated in culture medium and were measured using a radioimmunoassay for elastin. When elastin production was examined in ligament tissue from fetal calves of various gestational ages, cells from tissue taken during the last trimester of development produced significantly more elastin than did cells from younger fetal tissue, with maximal elastin synthesis occurring shortly before birth. Soluble elastin was detected in ligament cells plated at low density until proliferation began to be density inhibited and the cells became quiescent. Also, soluble elastin production per cell declined with increasing population doubling or with age in culture. Cells grown in the presence of 5% fetal calf serum produced approximately four times as much soluble elastin as cells grown in serum-free medium. The addition of dexamethasone (0.1 microM) and bleomycin (1 microgram/ml) increased soluble elastin production by cultured cells 180% and 50%, respectively, whereas theophylline (5 micrograms/ml) depressed production 50% and antagonized stimulation by dexamethasone. Ascorbate (50 micrograms/ml), soybean trypsin inhibitor (1 mg/ml), insulin (100 microunits/ml), and aminoacetonitrile (50 micrograms/ml) had no effect, but cycloheximide at 10(-4) M completely inhibited soluble elastin production. In contrast to cells in culture, ligament tissue minces (ligament cells surrounded by in vivo extracellular matrix) efficiently incorporated soluble elastin precursors into insoluble, cross-linked elastin. In addition, soluble elastin production per cell (per microgram of DNA) was higher in tissue minces than elastin production by cells maintained on plastic. These results suggest a role for extracellular matrix in formation of the elastic fiber and in stabilizing elastin phenotypic expression by ligament fibroblasts. Fibroblasts from the bovine ligamentum nuchae present an excellent model for in vitro studies of elastin biosynthesis.  相似文献   

2.
The physical and chemical properties of the mammalian aorta are known to vary as a function of distance from the heart. These properties are highly dependent collagen and elastic fibers. In order to evaluate the mechanisms which regulate the accumulation of these two connective tissue proteins, gene expression was evaluated at both the biosynthetic and messenger RNA levels. Short-term (3 h) explant cultures of the medial portion of four segments of the descending aorta in newborn pigs were incubated in the presence of [3H] proline. Collagen production was quantified by collagenase digestion and elastin production was determined by immunoprecipitation. Between the conus arteriosus and the bifurcation of the iliac arteries, relative collagen synthesis increased 2-fold (from 5.8 to 12.0% of total protein synthesis), while relative elastin synthesis declined 10-fold (from 16.4 to 1.6% of total protein synthesis). Similarly, collagen production increased more than 7-fold (from 6.7 to 49.8 X 10(3) molecules/cell/h) while elastin production was reduced more than 3-fold (from 71.8 to 21.0 X 10(3) molecules/cell/h) along this developmental gradient. Elastin synthesis appeared to be controlled to a significant extent by the availability of elastin mRNA, since both cell-free translation and molecular hybridization to a cloned elastin gene probe showed gradients of elastin gene expression. Similarly, collagen synthesis was apparently regulated, at least in part, by an inverse gradient of collagen mRNA, as measured with a cloned cDNA for the pro-alpha 1(I) collagen gene. Marked changes in the amount of non-elastin protein synthesis accompanied differentiation and accounted for larger changes in relative synthesis. These results suggest that the phenotype of the cells of the porcine artery wall is distinct in different regions of this organ at this developmental stage.  相似文献   

3.
The effects of cyclic nucleotides on elastin synthesis were studied in ligamentum nuchae fibroblasts by adding exogenous cyclic nucleotide derivatives or beta-adrenergic agents to cell culture medium. Elastin synthesis was enhanced (approximately 80%) by dibutyryl cGMP (Bt2cGMP) in concentrations ranging from 0.01 to 100 nM. Two other cGMP derivatives, 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP) and 2'-deoxy-cGMP, were also potent stimulators of elastin synthesis. In the absence of calcium, basal elastin production was substantially decreased (40% of control) and cGMP analogs no longer stimulated elastin synthesis, suggesting a role for calcium in the cGMP response. Bt2cAMP had no demonstrable effect on elastin production except at high concentrations which produced a nonspecific decrease equivalent to the decrease in total protein synthesis. Similarly, elevation of endogenous cellular cAMP levels by beta-adrenergic stimulation produced no change in elastin production. When 8-Br-cGMP was added to cells together with Bt2cAMP, cGMP-dependent stimulation of elastin production was abolished by cAMP in a dose-dependent fashion. These results suggest a coordinated means by which elastin production is controlled in ligament cells, i.e. increased cGMP levels lead to a stimulation of elastin production that is reversed by cAMP.  相似文献   

4.
Impaired elastin fiber assembly is observed in the fetal ductus arteriosus (DA), associated with a reduced concentration of elastin binding protein (EBP), a 67-kDa galactolectin. It is also seen in cultured aortic (Ao) smooth muscle cells (SMC) following the release of the EBP by glycosaminoglycans rich in N-acetylgalactosamine, such as chondroitin sulfate (CS). In the DA, impaired elastin fiber assembly is observed in conjunction with intimal thickening associated with increased migration of SMC into the subendothelium, a feature we previously related to increased production of fibronectin. In this report, we determined whether SMC use the EBP to attach to an elastin substrate, whether shedding of the EBP promotes SMC migration through a three-dimensional network of pure elastic laminae prepared from sheep aorta, and whether the latter is associated with increased production of fibronectin. We observed reduced attachment to elastin-coated surfaces of DA SMC deficient in EBP compared to Ao SMC. Addition of CS but not heparan sulfate (a glycosaminoglycan which does not induce EBP shedding) decreased Ao SMC attachment to elastin, as did preincubation with VGVAPG elastin-derived peptides which saturate the EBP. The immunolocalization of cell surface EBP suggested that cells can quickly replace EBP released from their surfaces by CS treatment. The magnitude of CS-induced impaired attachment of SMC to elastin was dose dependent and could be further increased by the administration of cyclohexamide and sodium azide. Also, the reversibility of CS-induced detachment was prevented by monensin. This suggests that a process of new synthesis and intracellular transport of the EBP was necessary to replace the EBP molecules released from the cell surface by CS treatment. In the migration assay, both DA and Ao SMC attached to the top of an elastin membrane, but only DA SMC deficient in EBP migrated through the laminae. Addition of CS, which induced shedding of EBP, resulted in Ao SMC migration associated with increased synthesis of fibronectin. We postulate that CS-induced release of EBP from SMC surfaces causes cell detachment from elastin and an increase in fibronectin synthesis, processes which may be critical in promoting SMC migration associated with intimal thickening developmentally in the DA and perhaps also in vascular disease.  相似文献   

5.
Culture of human mammary HBL-100 cells in the presence of dexamethasone, a synthetic glucocorticoid, resulted in opposite effects on the production of the two plasminogen activators (PAs): a decrease in urokinase-type PA (u-PA) and a concomitant increase in tissue-type PA (t-PA). Two PA-specific inhibitors, one related to that produced by bovine aortic endothelial cells, and the other related to that isolated from human placenta, were also produced by these cells; dexamethasone did not affect the production of either of these inhibitors. The glucocorticoid effects observed on PA enzymatic activities were associated with changes in PA mRNA levels. Experiments using inhibitors of RNA and protein synthesis suggested that the glucocorticoid-induced decrease in u-PA mRNA was a secondary event, requiring synthesis of new regulatory proteins; in contrast, the increase in t-PA mRNA appeared to be a direct effect on t-PA gene expression.  相似文献   

6.
Impaired elastin fiber assembly is observed in the fetal ductus arteriosus (DA), associated with a reduced concentration of elastin binding protein (EBP), a 67-kDa galactolectin. It is also seen in cultured aortic (Ao) smooth muscle cells (SMC) following the release of the EBP by glycosaminoglycans rich in AN-acetylgalactosamine, such as chondroitin sulfate (CS). In the DA, impaired elastin fiber assembly is observed in conjunction with intimal thickening associated with increased migration of SMC into the subendothelium, a feature we previously related to increased production of fibronectin. In this report, we determined whether SMC use the EBP to attach to an elastin substrate, whether shedding of the EBP promotes SMC migration through a threedimensional network of pure elastic laminae prepared from sheep aorta, and whether the latter is associated with increased production of fibronectin. We observed reduced attachment to elastin-coated surfaces of DA SMC deficient in EBP compared to Ao SMC. Addition of CS but not heparan sulfate (a glycosaminoglycan which does not induce EBP shedding) decreased Ao SMC attachment to elastin, as did preincubation with VGVAPG elastin-derived peptides which saturate the EBP. The immunolocalization of cell surface EBP suggested that cells can quickly replace EBP released from their surfaces by CS treatment. The magnitude of CS-induced impaired attachment of SMC to elastin was dose dependent and could be further increased by the administration of cyclohexamide and sodium azide. Also, the reversibility of CS-induced detachment was prevented by monensin. This suggests that a process of new synthesis and intracellular transport of the EBP was necessary to replace the EBP molecules released from the cell surface by CS treatment. In the migration assay, both DA and Ao SMC attached to the top of an elastin membrane, but only DA SMC deficient in EBP migrated through the laminae. Addition of CS, which induced shedding of EBP, resulted in Ao SMC migration associated with increased synthesis of fibronectin. We postulate that CS-induced release of EBP from SMC surfaces causes cell detachment from elastin and an increase in fibronectin synthesis, processes which may be critical in promoting SMC migration associated with intimal thickening developmentally in the DA and perhaps also in vascular disease.  相似文献   

7.
The temporal expression of elastogenesis is unique among connective tissues in that elastin production occurs primarily during late fetal and early neonatal periods and is essentially fully repressed once fiber assembly is completed. To test whether elastin synthesis in adult nuchal ligament fibroblasts is permanently repressed or whether the cells retain the ability to reinitiate production upon proper stimulation, we examined in adult ligament cells various parameters known to be involved in the regulation of elastin production. Elastin synthetic capacity, as determined by the levels of steady-state tropoelastin mRNA, of adult tissue was significantly decreased relative to fetal tissue. Likewise, fibroblasts grown from explants of adult ligament had about a fourfold decrease in elastin production and elastin-specific mRNA levels. On the other hand, adult cells were similar to fetal ligament cells in that they were sensitive to glucocorticoid stimulation and demonstrated chemotactic responsiveness to elastin peptides. Since our previous studies have shown that the extracellular matrix (ECM) plays an important role in influencing elastin phenotypic expression, fetal and adult fibroblasts were grown on slices of nonviable adult ligament to test if repression of elastin production was directed by factors in ECM of adult tissues. No change in elastin synthesis was detected with either cell type grown on adult ligament, whereas both fetal and adult cells demonstrated increased elastin production in response to contact with fetal ligament. These results suggest that adult ligament ECM does not provide a metabolic signal to shut off the elastin gene and that adult cells remain responsive to external stimuli that may reinitiate high levels of elastin synthesis.  相似文献   

8.
9.
10.
Synthesis and accumulation of elastin in many elastic tissues begins in the last third of fetal development, reaches a maximum shortly after birth, and then declines rapidly. For the aorta of the chick and the pig and the ligamentum nuchae and lung of the sheep, it has been shown that increased levels of elastin production with fetal development are correlated with increased levels of elastin mRNA in the tissue, measured both by cell-free translation and by hybridization to cDNA probes. In this study we examine the relationship between insoluble elastin accumulation and message levels for tropoelastin in aortic tissue of chickens during posthatching development and growth. Whether evaluated by cell-free translation or by dot blot hybridization, steady state levels of tropoelastin message increase to a maximum at 2 weeks after hatching, and then fall rapidly with further development and growth. This pattern correlates well with production of insoluble elastin by the aorta, determined either by direct measurements of synthesis or by rate of accumulation of insoluble elastin. The data indicate that the major site of regulation of elastin production is pretranslational throughout the entire period of development and growth of the chicken aorta.  相似文献   

11.
《The Journal of cell biology》1984,98(5):1813-1816
We studied chemotaxis to elastin peptides by bovine ligamentum nuchae fibroblasts to determine whether there is a developmental association between chemotactic responsiveness to elastin and expression of the elastin phenotype. Undifferentiated ligament cells demonstrate chemotactic responsiveness to platelet-derived growth factor and fibronectin, known chemoattractants for fibroblasts, but do not show chemotaxis to elastin peptides. After matrix-induced differentiation, however, young cells display a positive chemotactic response to elastin that persists even after the cells are removed from the matrix substratum. Matrix-induced chemotaxis to elastin could be inhibited selectively by incorporation of bromodeoxyuridine into DNA of undifferentiated cells before (but not after) contact with inducing matrix. These results show that the appearance of chemotaxis to elastin peptides parallels the onset of elastin synthesis and suggests that the acquisition of chemotactic responsiveness to elastin and expression of the elastin phenotype are affected by the same inducing elements or processes and may be closely coupled in development.  相似文献   

12.
Angiotensinogen is synthesized in large amounts by Fao cells derived from the Reuber H35 rat hepatoma in a medium enriched with 5% fetal bovine serum (FBS). Treatment of FBS with dextran-coated charcoal removed endogenous steroids without modifying angiotensinogen production. This treatment allowed the study of the effects of steroids on angiotensinogen production. Hydrocortisone increased the angiotensinogen synthesis in a dose-dependent manner. The antiglucocorticoid RU 38486 did not change the basal rate of angiotensinogen production but inhibited the stimulation by hydrocortisone. Similar results were obtained with dexamethasone. Angiotensinogen biosynthesis seems to be regulated by two distinct mechanisms: (a) glucocorticoid independent, controlling the basal rate of angiotensinogen production and (b) glucocorticoid dependent, mediating the increased rate of angiotensinogen production upon glucocorticoid treatment.  相似文献   

13.
A M Wu  A Schultz    R C Gallo 《Journal of virology》1976,19(1):108-117
Previous studies have shown that in certain cell systems dexamethasone may enhance the production of type C viruses. Conversely, interferon has been shown to inhibit their production. Both appear to exert their influence late in the viral replication cycle rather than on the synthesis of viral-specific RNA. In this report dexamethasone and interferon have been used to study some aspects of the mechanisms involved in the synthesis of type C viruses in murine K-BALB cells following induction of virus production by iododeoxyuridine. Interferon inhibited production of xenotropic type C virus induced by iododeoxyuridine from K-BALB cells both in the absence and presence of dexamethasone, but it did not affect production of N-tropic type C virus. Exposure of the cells to interferon for longer than 12 h was required for maximum effect. Two types of inhibitory effects were observed: one diminished by dexamethasone when the steroid was added 24 h after interferon removal, and the second resistant to dexamethasone. The concentration of intracellular group-specific antigen was diminshed after interferon and increased after dexamethasone exposure. When induced cells were treated with both interferon and dexamethasone, the intracellular group-specific protein concentration was slightly increased, but virus production was reduced 10-fold compared with induced cells treated with dexamethasone alone. We conclude that interferon and dexamethasone may affect both the synthesis of viral proteins and the assembly or release of virus particles and that dexamethasone can partially nullify the inhibitory activity of interferon. The results also support previous conclusions that the regulatory mechanisms for synthesis of viral proteins and for the release of viral particles may differ and that controls for xenotropic and ecotropic virus formation may not be identical.  相似文献   

14.
Macrophage and neutrophil proteinases damage lung elastin, disrupting alveolar epithelium and filling alveoli with inflammatory exudate. Alveolar collapse and regional hypoxia occur. Whether low oxygen tension alters fibroblast-mediated lung repair is unknown. To determine the effect of chronic hypoxia on repair of enzyme-induced elastin disruption, primary rat lung fibroblasts produced elastin matrix for 5 wk before treatment with porcine pancreatic elastase (PPE). After exposure to PPE or saline, cultures recovered for 2 wk in normoxia (21% O(2)) or hypoxia (3% O(2)). Hypoxia suppressed regeneration of hot alkali-resistant elastin, achieving only 49% of the repair achieved in normoxic cultures. Vascular smooth muscle cells and lung fibroblasts repair elastin by two pathways: de novo synthesis and salvage repair. Although both pathways were affected, hypoxia predominantly inhibited de novo synthesis, decreasing formation of new elastin matrix by 63% while inhibiting salvage repair by only 36%. Prolonged hypoxia alone downregulated steady-state levels of elastin mRNA by 45%, whereas PPE had no significant effect on elastin gene expression. Electron microscopy documented preservation of intracellular organelles and intact nuclei. Together, these data suggest that regional hypoxia limits lung elastin repair following protease injury at least in part by inhibiting elastin gene expression.  相似文献   

15.
Amiodarone is a Class III antiarrhythmic agent that has been implicated as a cause of human pulmonary fibrosis. Pulmonary fibrosis is associated with increased levels of connective tissue proteins such as collagen and elastin. The purpose of this investigation was to determine whether elastin synthesis would be altered by in vitro amiodarone administration. Primary hamster lung cell cultures were utilized. Cultures were treated with 2, 10, and 20 micrograms/ml amiodarone. Following treatment, elastin synthesis was monitored by a biochemical tracer assay based on the presence of the cross-linking amino acids: desmosine/isodesmosine. These cross-links are found only in elastin. Addition of [14C] lysine to cultures results in uptake of the radiolabel into the cross-links. Cross-links were isolated and identified using chromatography and electrophoresis. At all doses of amiodarone, elastin synthesis was seen to increase above control levels. Light and electron microscopy confirmed the presence of an extracellular matrix. The morphologic studies also revealed the presence of cytoplasmic inclusion bodies and vacuoles that are often associated with cationic, amphiphilic drugs such as amiodarone.  相似文献   

16.
The elastin content of the chick thoracic aorta increases 2--3-fold during the first 3 weeks post-hatching. The deposition of elastin requires the covalent cross-linking of tropoelastin by means of lysine-derived cross-links. This process is sensitive to dietary copper intake, since copper serves as cofactor for lysyl oxidase, the enzyme that catalyses the oxidative deamination of the lysine residues involved in cross-link formation. Disruption of cross-linking alters tissue concentrations of both elastin and tropoelastin and results in a net decrease in aortic elastin content. Autoregulation of tropoelastin synthesis by changes in the pool sizes of elastin or tropoelastin has been suggested as a possible mechanism for the diminished aortic elastin content. Consequently, dietary copper deficiency was induced to study the effect of impaired elastin cross-link formation on tropoelastin synthesis. Elastin in aortae from copper-deficient chicks was only two-thirds to one-half the amount measured in copper-supplemented chicks, whereas copper-deficient concentrations of tropoelastin in aorta were at least 5-fold higher than normal. In spite of these changes, however, increased amounts of tropoelastin, copper deficiency and decreased amounts of elastin did not influence the amounts of functional elastin mRNA in aorta. Likewise, the production of tropoelastin in aorta explants was the same whether the explants were taken from copper-sufficient or -deficient birds. The lower accumulation of elastin in aorta from copper-deficient chicks appeared to be due to extracellular proteolysis, rather than to a decrease in the rate of synthesis. Electrophoresis of aorta extracts, followed by immunological detection of tropoelastin-derived products, indicated degradation products in aortae from copper-deficient birds. In extracts of aortae from copper-sufficient chicks, tropoelastin was not degraded and appeared to be incorporated into elastin without further proteolytic processing.  相似文献   

17.
We have investigated the mechanisms by which dexamethasone (a synthetic glucocorticoid) stimulates the production of mouse mammary tumor virus (MMTV) by cell cultures derived from mammary carcinomas of GR mice. Treatment of these cells with dexamethasone stimulates a rapid accumulation of intracellular virus-specific RNA which is dependent upon RNA synthesis but not upon DNA or protein synthesis. The effect of dexamethasone is probably mediated by a specific and saturable glucocorticoid receptor. We conclude that the accumulation of MMTV RNA is a primary response to dexamethasone and that the rate of synthesis of MMTV RNA is probably accelerated by treatment with dexamethasone.  相似文献   

18.
Summary Angiotensinogen is synthesized in large amounts by Fao cells derived from the Reuber H35 rat hepatoma in a medium enriched with 5% fetal bovine serum (FBS). Treatment of FBS with dextran-coated charcoal removed endogenous steroids without modifying angiotensinogen production. This treatment allowed the study of the effects of steroids on angiotensinogen production. Hydrocortisone increased the angiotensinogen synthesis in a dosedependent manner. The antiglucocorticoid RU 38486 did not change the basal rate of angiotensinogen production but inhibited the stimulation by hydrocortisone. Similar results were obtained with dexamethasone. Angiotensinogen biosynthesis seems to be regulated by two distinct mechanisms: (a) glucocorticoid independent, controlling the basal rate of angiotensinogen production and (b) glucocorticoid dependent, mediating the increased rate of angiotensinogen production upon glucocorticoid treatment. This work was supported in part by a grnat from Inserm (CRL 824022).  相似文献   

19.
20.
Chondrocytes isolated enzymatically from rabbit ear cartilage, were cultivated in vitro in the presence of 2% agarose or 0.1 mumol/l dexamethasone. Freshly-isolated chondrocytes suspended in either Eagle's medium or 2% agarose were auto-transplanted intramuscularly. Samples were then examined by light microscopy and transmission electron microscopy. The cells cultivated in vitro rapidly formed confluent multiple overlapping layers filled with a loose matrix consisting of single collagen fibres, proteoglycans and scarce elastic fibres. The number and maturity of the elastic fibres increased substantially after dexamethasone was added. The chondrocytes in intramuscular transplants produced a larger amount of intercellular matrix with many elastic fibres than those cultured in vitro. Addition of agarose to in vitro and in vivo systems selectively suppressed the elastin production but did not diminish the production of elastic fibre microfibrils and other matrix components. This made cultures and transplants of elastic chondrocytes resemble rather hyaline cartilage than the original tissue. It seems that the lack of elastin in the matrix does not result simply from inhibition of elastin secretion or increased elastolysis. It may be related to a reversible change of genetic expression of elastic cartilage chondrocytes under the influence of agarose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号