首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the O-antigenic polysaccharide (PS) from the enteroaggregative Escherichia coli strain 522/C1 has been determined. Component analysis and (1)H and (13)C NMR spectroscopy techniques were used to elucidate the structure. Inter-residue correlations were determined by (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [ structure: see text]. Analysis of NMR data reveals that on average the PS consists of four repeating units and indicates that the biological repeating unit contains an N-acetylgalactosamine residue at its reducing end. Serotyping of the E. coli strain 522/C1 showed it to be E. coli O 178:H7. Determination of the structure of the O-antigen PS of the international type strain from E. coli O 178:H7 showed that the two polysaccharides have identical repeating units. In addition, this pentasaccharide repeating unit is identical to that of the capsular polysaccharide from E. coli O9:K 38, which also contains O-acetyl groups.  相似文献   

2.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O152 has been determined. Component analysis together with 1H, 13C and 31P NMR spectroscopy were used to elucidate the structure. Inter-residue correlations were determined by 1H,31P COSY, 1H,1H NOESY and 1H,13C heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. The structure is similar to that of the O-antigen polysaccharide from E. coli O173. The cross-reactivity between E. coli O152 and E. coli O3 may be explained by structural similarities in the branching region of their O-antigen polysaccharides.  相似文献   

3.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O176 has been determined. Component analysis together with 1H and 13C NMR spectroscopy was employed to elucidate the structure. Inter-residue correlations were determined by 1H, 1H NOESY and 1H, 13C heteronuclear multiple-bond correlation experiments. The PS is composed of tetrasaccharide repeating units with the following structure: [Formula: see text] Cross-peaks of low intensity from alpha-linked mannopyranosyl residues were present in the 1H, 1H TOCSY NMR spectra and further analysis of these showed that they originate from the terminal part of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O176 O-antigen is similar to those from E. coli O17 and O77, thereby explaining the reported cross-reactivities between the strains, and identical to that of Salmonella cerro (O:6, 14, 18).  相似文献   

4.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

5.
The O-antigen of the lipopolysaccharide (LPS) from the enteroaggregative Escherichia coli strain 87/D2 has been determined by component analysis together with NMR spectroscopy. The polysaccharide has pentasaccharide repeating units in which all the residues have the galacto-configuration. The repeating unit of the O-antigen, elucidated using the O-deacylated LPS, is branched with the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately 0.7 per repeating unit) distributed over two positions. Subsequent analysis showed that the galactose residue carries acetyl groups at either O-3 or O-4 in a ratio of approximately 2:1. The international reference strain from E. coli O128ab was investigated and the repeating unit of the O-antigens has the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately one per repeating unit) distributed over two positions. The integrals of the resonances for the O-acetyl groups indicated similarities between the O-antigen from E. coli O128ab and that of E. coli strain 87/D2, whereas the O-acetyl substitution pattern in the E. coli O128ac O-antigen differed slightly. Enzyme immunoassay using specific anti-E. coli O128ab and anti-E. coli O128ac rabbit sera confirmed the results.  相似文献   

6.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O77 has been determined. Sugar and methylation analysis together with 1H and 13C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure:-->2)-alpha-D-Manp-(1-->2)-beta-D-Manp-(1-->3)-alpha-D-GlcpNAc-(1-->6)-alpha-D-Manp-(1-->  相似文献   

7.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from an enteroaggregative Escherichia coli (strain 105) has been elucidated, using primarily one-dimensional and two-dimensional NMR experiments. The sequence of residues was deduced with heteronuclear multiple-bond correlation and NOESY experiments. The structure of the repeating unit of the polysaccharide from the enteroaggregative E. coli is as follows:[sequence: see text] The structure of the O-antigen from enteroaggregative E. coli strain 105 was shown to be identical with that of E. coli O21 by sugar and methylation analyses as well as by 1H-NMR and 13C-NMR spectroscopy.  相似文献   

8.
The O-antigen polysaccharide of the lipopolysaccharide from the enteroaggregative Escherichia coli strain 62D1 has been determined. Sugar and methylation analysis together with 1H and 13C NMR spectroscopy revealed the components of the repeating unit. Two-dimensional NOESY and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. 1H and 13C NMR spectra indicate heterogeneity in the polysaccharide. Methylation analysis and 1H NMR spectra of native and Smith-degraded material show that the majority (65%) of the repeating units has the following structure: Minor resonances in the NMR spectra are consistent with the presence of repeating units which lack the alpha-d-Galp terminal residue (35%).  相似文献   

9.
The O-antigen of the lipopolysaccharide from Escherichia coli O166 has been determined by component analysis together with 1D and 2D NMR spectroscopy techniques. The polysaccharide has pentasaccharide repeating units consisting of D-glucose (1), D-galactose (2) and N-acetyl-D-galactosamine (2) with the following structure: [STRUCTURE: SEE TEXT]. In the 1H NMR, spectrum resonances of low intensity were observed. Further analysis of these showed that they originate from the terminal part of the polysaccharide, thereby revealing that the repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end.  相似文献   

10.
The structures of the O-antigenic part of the lipopolysaccharides from Shigella dysenteriae type 3 and Escherichia coli O124 have been reinvestigated. (1)H and (13)C NMR spectroscopy in combination with selected 2D NMR techniques were used to determine the O-antigen pentasaccharide repeating units with the following structure: [see text]. From biosynthetic considerations this should also be the biological repeating unit. The structures of the repeating units also explain the previously observed cross-reactivity between the strains and to E. coli O164, which only differs in the terminal sugar residue that is lacking the (R)-1-carboxyethyl group.  相似文献   

11.
The structure of the O-antigen polysaccharide from Escherichia coli O159 has been determined using primarily NMR spectroscopy of the 13C-enriched polysaccharide. The sequence of the sugar residues could be determined by heteronuclear multiple bond connectivity NMR experiments. The polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [sequence: see text] Matrix assisted laser desorption ionization mass spectrometry was performed on intact lipopolysaccharide and from the resulting molecular mass the O-antigen part was estimated to contain approximately 23 repeating units. Cross-reactivity of this O-antigen to that of Shigella dysenteriae type 4 was confirmed using enzyme-linked immunoabsorbant assay.  相似文献   

12.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from the enteroinvasive Escherichia coli O136 has been elucidated. The composition of the repeating unit was established by sugar and methylation analysis together with 1H and 13C NMR spectroscopy. Two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. The absolute configuration for the nonulosonic acid (NonA) could be determined using spin-spin coupling constants, 13C chemical shifts and NOESY. The anomeric configuration of the NonA was determined via vicinal and geminal 13C,1H coupling constants. The structure of the repeating unit of the polysaccharide from E. coli O136 is as follows, in which beta-NonpA is 5,7-diacetamido-3,5,7, 9-tetradeoxy-Lglycero-beta-Lmanno-nonulosonic acid: -->4)-beta-NonpA-(2-->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->  相似文献   

13.
The structure of the O-antigenic part of the lipopolysaccharide (LPS) obtained from the verotoxin-producing Escherichia coli O171 has been determined. (1)H and (13)C NMR spectroscopy techniques in combination with component analysis were used to elucidate the O-antigen structure of O-deacylated LPS. Subsequent NMR analysis of the native LPS revealed acetylation at O-7/O-9 of the sialic acid residue. The sequence of sugars was determined by inter-residue correlations in (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation spectra. The O-antigen is composed of pentasaccharide repeating units with one equivalent of O-acetyl groups distributed over two positions: -->4)-alpha-Neu5Ac7,9Ac-(2-->6)-beta-D-Galp-(1-->6)-beta-DGlcp-->(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1--> Based on biosynthetic considerations, this should also be the biological repeating unit.  相似文献   

14.
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1-->  相似文献   

15.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O173 has been investigated. Sugar and methylation analyses, electrospray ionisation mass spectrometry together with 1H, 31P and 13C NMR spectroscopy were the main methods used. The structure of the pentasaccharide repeating unit of the PS was found to be: [formula: see text] By treatment with 48% HF the phosphoric diester linkage was cleaved together with the glycosidic linkage of the fucosyl group, rendering a tetrasaccharide with the structure: alpha-D-Glcp-(1-->2)-beta-D-Glcp-(1-->3)-beta-D-GlcpNAc-(1-->3)-D-Glc.  相似文献   

16.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O177 has been determined. Component analysis together with 1H and 13C NMR spectroscopy experiments was used to determine the structure. Inter-residue correlations were determined by 1H,13C-heteronuclear multiple-bond correlation and 1H,1H-NOESY experiments. PS is composed of tetrasaccharide repeating units with the following structure:→2)-α-l-Rhap-(1→3)-α-l-FucpNAc-(1→3)-α-l-FucpNAc-(1→3)-β-d-GlcpNAc-(1→An α-l-Rhap residue is suggested to be present at the terminal part of the polysaccharide, which on average is composed of ∼20 repeating units, since the 1H and 13C chemical shifts of an α-linked rhamnopyranosyl group could be assigned by a combination of 2D NMR spectra. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-glucosamine residue at its reducing end. The repeating unit of the E. coli O177 O-antigen shares the →3)-α-l-FucpNAc-(1→3)-β-d-GlcpNAc-(1→ structural element with the O-antigen from E. coli O15 and this identity may then explain the reported cross-reactivity between the strains.  相似文献   

17.
The structure of the O-antigen polysaccharide from Escherichia coli O164 has been determined. Nuclear magnetic resonance spectroscopy together with component and methylation analyses of lipid free polysaccharide were the principal methods used. The sequence of the sugar residues could be determined by NOESY and heteronuclear multiple bond connectivity NMR experiments. It is concluded that the polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure: see text]. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was performed on intact lipopolysaccharide and from the resulting molecular mass, the O-antigen part was estimated to contain approximately 24 repeating units. The nature of the previously reported cross-reactivity of this O-antigen to those of Escherichia coli O124 and Shigella dysenteriae type 3 is discussed.  相似文献   

18.
Datta AK  Basu S  Roy N 《Carbohydrate research》1999,322(3-4):219-227
The O-specific polysaccharide isolated from Escherichia coli O158 smooth lipopolysaccharide contains L-rhamnose, D-glucose and 2-acetamido-2-deoxy-D-galactose in the molar ratios 1:2:2. Studies on composition, methylation analysis and specific degradations together with a 1H and 13C NMR spectral study established that the O-antigen is built up from a pentasaccharide repeating unit having the following structure: [formula: see text] The most effective inhibitory part of the oligosaccharide from E. coli O158 lipopolysaccharide has been serologically characterized by an ELISA-inhibition study using different sugars. The results showed that methyl alpha- and beta-D-GalpNAc are the most effective inhibitors among the monosaccharides tested, while the main antibody specificity lies on the main-chain trisaccharide repeating unit.  相似文献   

19.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O175 has been elucidated. Component analysis together with 1H and 13C NMR spectroscopy experiments were used to determine the structure. Inter-residue correlations were determined by 1H,1H-NOESY, and 1H,13C-heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure:→2)-α-d-Glcp-(1→4)-α-d-GlcpA-(1→3)-α-d-Manp-(1→2)-α-d-Manp-(1→3)-β-d-GalpNAc-(1→Cross-peaks of low intensity from an α-linked glucopyranosyl residue were present in the 1H,1H-TOCSY NMR spectra. The α-d-Glcp residue is suggested to originate from the terminal part of the polysaccharide and consequently the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O175 O-antigen is similar to those from E. coli O22 and O83, both of which carry an α-d-Glcp-(1→4)-d-GlcpA structural element, thereby explaining the reported cross-reactivities between the strains.  相似文献   

20.
A strain of Citrobacter sedlakii showing serological cross-reaction with Escherichia coli O157 antisera was demonstrated to produce a lipopolysaccharide O-antigen having an identical structure with that of the E. coli O157 O-antigen. A strain of Citrobacter freunndii showing similar cross-reaction with E. coli O157 specific monoclonal antibody was shown to produce a lipopolysaccharide O-antigen composed of a trisaccharide repeating unit having the structure [ 2)-alpha-D Rhap-(1-3)-beta-D-Rhap-(1-4)-beta-D-Glcp-(1-]. This O-antigen differs from that of the E. coli O157 O-antigen and also lacks a component 2-substituted 4-amino-4,6-dideoxy-alpha-D-mannopyranosyl residue implicated as the common epitope in the lipopolysaccharide O-antigens of previously investigated bacterial species showing serological cross-reactivity with E. coli O157 antisera. The C freundii O-antigen presents an interesting example of structural mimicry within a bacterial polysaccharide antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号