首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The delay procedure is known to augment pedicled skin or muscle flap survival. In this study, we set out to investigate the effectiveness of vascular delay in two rabbit muscle flap models. In each of the muscle flap models, a delay procedure was carried out on one side of each rabbit (n = 20), and the contralateral muscle was the control. In the latissimus dorsi flap model, two perforators of the posterior intercostal vessels were ligated. In the biceps femoris flap model, a dominant vascular pedicle from the popliteal artery was ligated. After the 7-day delay period, the bilateral latissimus dorsi flaps (based on the thoracodorsal vessels) and the bilateral biceps femoris flaps (based on the sciatic vessels) were elevated. Animals were divided into three groups: part A, assessment of muscle flap viability at 7 days using the tetrazolium dye staining technique (n = 7); part B, assessment of vascular anatomy using lead oxide injection technique (n = 7); and part C, assessment of total and regional capillary blood flow using the radioactive microsphere technique (n = 6). The results in part A show that the average viable area of the latissimus dorsi flap was 96 +/- 0.4 percent (mean +/- SEM) in the delayed group and 84 +/- 0.7 percent (mean +/- SEM) in the control group (p < 0.05, n = 7), and the mean viable area of the biceps femoris flap was 95 +/- 2 percent in the delayed group and 78 +/- 5 percent in the control group (p < 0.05, n = 7). In part B, it was found that the line of necrosis in the latissimus dorsi flap usually appeared at the junction between the second and third vascular territory in the flap. Necrosis of the biceps femoris flap usually occurred in the third territory, and occasionally in both the second and the third territories. In Part C, total capillary blood flow in delayed flaps (both the latissimus dorsi and biceps femoris) was significantly higher than that in the control flaps (p < 0.05). Increased regional capillary blood flow was found in the middle and distal regions, compared with the control (p < 0.05, n = 6). In conclusion, ligation of either the dominant vascular pedicle in the biceps femoris muscle flap or the nondominant pedicle in the latissimus dorsi muscle flap in a delay procedure 1 week before flap elevation improves capillary blood flow and muscle viability. Vascular delay prevents distal flap necrosis in two rabbit muscle flap models.  相似文献   

2.
An experimental study was conducted to investigate the potential use of intravascular gene therapy with adenovirus-mediated (Ad) vascular endothelial growth factor (VEGF) or angiopoietin-1 (Ang-1) for the enhancement of muscle flap perfusion and to evaluate the effect of therapy on microcirculatory hemodynamics and microvascular permeability in vivo by using a cremaster muscle flap model in the rat. The cremaster tube flap was left intact after isolation of the pudo-epigastric pedicle. A total of 90 male Sprague-Dawley rats were divided into five groups of 18 each, according to the type of intraarterial treatment. Control flaps received phosphate-buffered saline. Group 2 (the control gene encoding green fluorescent protein, Ad-GFP) served as the adenovirus control. In Groups 3, 4, and 5, flaps were pretreated with Ad-VEGF, Ad-Ang-1, and Ad-Ang-1 + Ad-VEGF, respectively. Flaps were preserved in a subcutaneous pocket in the hindlimb for evaluation of functional capillary density and microvascular permeability indices at 3, 7, and 14 days by intravital microscopy system. At day 7 and 14, Ad-VEGF, Ad-Ang-1, and combined treatment groups showed significantly higher numbers of capillary densities when compared with control and Ad-GFP groups (p < 0.05). At day 14, Ad-VEGF was the superior treatment group compared with Ad-Ang-1 and Ad-VEGF + Ad-Ang-1 (p < 0.05). Overall, there was a linear increase in the number of functional capillaries in all treatment groups (p < 0.05). At day 3 after Ad-Ang-1 therapy, a significantly lower permeability index was found when compared with Ad-VEGF + Ad-Ang-1 and Ad-VEGF alone treatment (p < 0.05). At day 7, the Ad-VEGF group had the highest score of permeability index compared with control, combined, and Ad-Ang-1 groups (p < 0.05). Histologic evaluation of muscle flaps demonstrated mild focal inflammation. There was evidence of mild vasculitis in all flaps except control muscles. Intravascular angiogenic therapy with Ad-VEGF or Ad-Ang-1 was technically feasible, as demonstrated by expression of the control gene, GFP, along the vascular tree. All treatment groups increased perfusion of the muscle flap over a period of 14 days, indicating a long-lasting effect of gene therapy. Ang-1 alone or in combination with VEGF was as effective as VEGF alone in augmenting muscle perfusion with more stable vessels 1 week after gene therapy.  相似文献   

3.
Vascular endothelial growth factor (VEGF), a potent endothelial mitogen, is secreted in ischemic tissue and plays a pivotal role in angiogenesis. We studied whether VEGF administered to a rat muscle flap at the time of ischemia induction would increase microcirculatory flow to the flap. The cremaster muscle flap was isolated on its neurovascular pedicle. Ischemia was induced by clamping the vascular pedicle, and 0.2 ml of either VEGF (0.1 microg) or vehicle (phosphate-buffered saline) was immediately infused into the muscle. After 4 or 6 hours, the clamps were released, and the cremaster was placed in a pocket in the medial thigh for 24 hours. The muscle was then dissected, and microcirculatory measurements were made under intravital microscopy. Six animals were used in each of the four groups. All flaps exposed to 6 hours of ischemia, the duration considered to be critical ischemia, had no significant microcirculatory flow, regardless of treatment with VEGF. In the 4-hour ischemia group, or subcritical ischemia group, red blood cell velocity in arterioles was 14 mm/sec in muscles treated with VEGF and 9 mm/sec in controls (p = 0.02), and capillary flow was 7 per high-power field in muscles treated with VEGF versus 2 per high-power field in controls (p = 0.0005). Thus, VEGF did not alter microcirculatory flow in a muscle flap exposed to critical ischemia, but it did enhance flow to a flap exposed to subcritical ischemia.  相似文献   

4.
To further clarify the pathogenesis of the poorer prognosis in skin flaps exposed to venous stasis compared with arterial insufficiency, a microsphere study was conducted in bilateral rectus abdominis island flaps in seven pigs. The relationship between capillary blood flow and arteriovenous (A-V) shunting was studied during progressive 1-hour intervals of arterial insufficiency and venous stasis and during 3 hours of reperfusion. Under controlled conditions, total blood flow was reduced from 100 percent to both 50 and 25 percent by application of an adjustable clamp on the artery supplying one flap and on the vein draining the contralateral flap. The relative distribution between A-V shunt flow and capillary blood flow was different in arterial insufficiency when compared with venous stasis at both the 50 percent and the 25 percent blood flow levels. In the arterial insufficiency flaps, the A-V shunt flow and capillary blood flow shared the total blood flow in the following percentages: 64/36 (at 100 percent total blood flow), 44/56 (at 50 percent total blood flow level), and 22/78 (at 25 percent total blood flow level). In the venous stasis flaps, the A-V shunt flow and the capillary blood flow shared the total blood flow in percentages of 70/30, 66/34, and 55/45, respectively. Hence, in arterial insufficiency flaps, capillary blood flow was spared by a relatively greater decline in A-V shunting compared with venous stasis flaps. Redistribution of capillary blood flow from subcutaneous tissue to muscle was observed, whereas blood flow was equally distributed throughout the length of the flaps at all flow levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Combination of radical excision and radiation has been used as a treatment modality for cancer patients. As a result, in reconstructive surgery there is often a need to harvest flaps in the vicinity of previously irradiated tissues. Radiation has been shown to cause progressive injury to the macrocirculation and microcirculation, often jeopardizing flap survival. The purpose of this study was to examine whether radiation significantly affects the sequence of leukocyte-endothelial interactions or the hemodynamics of the muscle flap in both acute and chronic situations. Male Sprague-Dawley rats (n = 42) were divided into seven groups of six rats each. Rats in group I were not irradiated. Groups II through VII received 8-Gy radiation to the right groin and scrotum. Groups II, III, and IV were examined at 4, 24 and 72 hours, respectively, and groups V, VI, and VII were examined at 1, 2 and 12 weeks. For intravital microscopy, the cremaster muscle was dissected on its neurovascular pedicle. Vessel diameters and red blood cell velocities were measured in the central cremasteric branches and branch arterioles. Capillary perfusion was evaluated in 27 visual fields of each flap. Leukocyte-endothelial interactions were evaluated by numbers of rolling, adhering, and transmigrating leukocytes in post-capillary venules. In the same postcapillary venule, we measured the endothelial edema index (constriction index). The hemodynamics of irradiated flaps did not differ significantly from those of controls. Diameter and red blood cell velocity were increased in the first- and second-order arterioles and were highest at 72 hours and 1 week. After irradiation, third-order arterioles were constricted. Radiation reduced capillary perfusion by 4.3, percent. None of the differences were statistically significant. Neither leukocyte behavior nor the constriction indices differed among the groups. In conclusion, low-dose radiation of 8 Gy does not affect hemodynamics or leukocyte-endothelial interactions of muscle flaps in the rat. Muscle tissue with intact microvasculature can be harvested for reconstructive procedures after low-dose radiation.  相似文献   

6.
Partial transverse rectus abdominis myocutaneous (TRAM) flap loss in breast reconstruction can be a devastating complication for both patient and surgeon. Surgical delay of the TRAM flap has been shown to improve flap viability and has been advocated in "high-risk" patients seeking autogenous breast reconstruction. Despite extensive clinical evidence of the effectiveness of surgical delay of TRAM flaps, the mechanisms by which the delay phenomenon occurs remain poorly understood. To examine whether angiogenic growth factors such as basic fibroblast growth factor (bFGF) may play a role in the delay phenomenon, the authors studied the expression of bFGF in rat TRAM flaps subjected to surgical delay. Thirty-five female Sprague-Dawley rats were randomly assigned to one of four TRAM flap groups: no delay (n = 6), 7-day delay (n = 12), 14-day delay (n = 10), or 21-day delay (n = 7). Surgical delay consisted of incising skin around the perimeter of the planned 2.5 x 5.0-cm TRAM flap followed by ablation of both superior epigastric arteries and the left inferior epigastric artery, thus preserving the right inferior epigastric artery (the nondominant blood supply to the rectus abdominis muscle of the rat). TRAM flaps were then elevated after 7, 14, and 21 days of delay by raising zones II, III, and IV off the abdominal wall fascia. Once hemostasis was assured, the flaps were sutured back in place. All flaps were designed with the upper border of the flap 1 cm below the xiphoid tip. Three days after the TRAM procedure, postfluorescein planimetry was used to determine percent area viability of both superficial and deep portions of TRAM flaps. All rats were euthanized and full-thickness TRAM specimens were taken from zones I, II, III, and IV for enzyme-linked immunoabsorbent assay analysis of bFGF levels. Statistical testing was done by t test (percent viability) and two-way analysis of variance (bFGF levels). All delayed flaps had significantly higher bFGF levels when compared with all nondelayed control flaps (p < 0.05). The bFGF levels were not different in the rats that received TRAM flaps 7, 14, or 21 days after delay surgery. There was also no significant difference in bFGF levels among zones I through IV. Control rats had more peripheral zone necrosis compared with all delayed TRAM rats. All delayed flaps had a significantly higher area of flap viability superficially than nondelayed control flaps (p < 0.05). There was no difference in deep flap viability. Surgical delay of rat TRAM flaps is associated with improved flap viability and significantly elevated levels of bFGF over nondelayed TRAM flaps at postoperative day 3 after TRAM surgery. The increases in bFGF noted at this time point suggests that bFGF may play a role in the improved TRAM flap viability observed after delay surgery. Further investigation is needed to evaluate the role bFGF may play in the delay phenomenon.  相似文献   

7.
The present study was designed to investigate the early and late effects of ischemic preconditioning on muscle flap perfusion and reperfusion-induced skeletal muscle damage. Thirty-six Sprague-Dawley rats were divided into six experimental groups of six animals each. The cremaster muscle flap model and the intravital microscopy system were used to observe microcirculatory changes associated with ischemia-reperfusion injury and ischemic preconditioning. In groups 1, 2, and 3, microcirculatory measurements were taken on the same day; however, in groups 4, 5, and 6, measurements were taken a day after surgery. Group 1 served as a control. The cremaster muscle was prepared as a tube flap, subjected to an hour of perfusion without ischemia. In group 2 (ischemic preconditioning + ischemia group), the cremaster muscle tube flap was subjected to 30 minutes of ischemia and 30 minutes of reperfusion, followed by 4 hours of total ischemia. In group 3 (ischemia alone), the flap was submitted to 4 hours of ischemia alone. In group 4 (control), the cremaster muscle flaps were dissected out, preserved in the subcutaneous tunnel, and submitted to 24 hours of perfusion only. In group 5 (ischemic preconditioning + 24 hours of perfusion + 4 hours of ischemia), the ischemic preconditioning protocol was followed by 24 hours of perfusion and 4 hours of ischemia. In group 6 (24 hours of perfusion + ischemia), the same protocol was used as in group 5 without ischemic preconditioning. Functional capillary perfusion, and the diameters of the arterioles of the first, second, and third order were significantly increased in the ischemic preconditioning group during the early period, but not after 24 hours of perfusion. No differences in the red blood cell velocities of arterioles of the first, second, or third order were found in either the early-effect or late-effect groups. The numbers of rolling, adhering, and transmigrating leukocytes, however, were significantly lower in the ischemic preconditioning group at both early and late follow-up. Ischemic preconditioning of the skeletal muscle flap has both an early and a late protective effect against reperfusion injury. Ischemic preconditioning at the early interval significantly improves muscle flow hemodynamics of the flap and attenuates leukocyte-mediated reperfusion injury. After 24 hours of reperfusion, however, ischemic preconditioning failed to improve the flow hemodynamics of the flap, yet it still protected the skeletal muscle flap from leukocyte-mediated reperfusion injury.  相似文献   

8.
To study the role of ischemia due to low perfusion as the inciter of neovascularization, caudally based 3 X 9 cm skin flaps were created on the dorsum of 50 Sprague-Dawley rats. After injection of 0.2 ml 10% fluorescein, the animals were divided into two groups. In group I (n = 25), the distal margin of the flap tip was 1 cm proximal to the border of the fluorescence (good perfusion). In group II (n = 25), the flap was cut 1 cm distally in the nonfluorescent part (poor perfusion). The tips of the tubed flaps were transferred to a wound bed on the right flank. After 10 days, the pedicles were ligated, so that flap survival depended totally on the new vascular supply from the inset area of the flap. The flaps in group I showed a significantly higher rate of necrosis of 52.4 +/- 15.1 percent versus 1.7 +/- 1.4 percent in group II (p less than 0.0001), although the flap length in group I (5.85 +/- 1.16 cm) was less than in group II (7.15 +/- 0.95 cm; p = 0.0001). A nearly three times larger amount of tissue based on the new blood supply survived in group II compared to group I. Xerograms after injection of PbO2-gelatine on day 10 showed an increased ingrowth of blood vessels in group II. After excluding the delay phenomenon as the cause for the difference in necrosis rate, it is concluded that the only possible explanation is an enhancement of neovascularization by a perfusion gradient between the wound margins.  相似文献   

9.
Monitoring of nutritive blood flow in muscle is of particular importance to reconstructive surgeons, since ischemia/reperfusion in striated muscle is known to result in postischemic microvascular perfusion failure. Laser Doppler flowmetry has recently been introduced as an easy-to-use, noninvasive technique for continuous monitoring of microvascular tissue perfusion. Despite its popularity, there exists a great deal of controversy as to what actually generates the laser Doppler signal recorded from a given tissue. Intravital microscopy is a technique for direct visualization of the nutritional circulation in tissue. By using intravital microscopy, direct measurements of blood perfusion in individual segments of the nutritional microcirculation can be made. In 22 Syrian golden hamsters we performed laser Doppler flowmetry and intravital microscopy measurements in muscle tissue prior to and during reperfusion after 4 hours of tourniquet ischemia using the dorsal skinfold chamber model. Intravital microscopy (n = 10) revealed a heterogeneous capillary perfusion during the early reperfusion phase with a decrease (p less than 0.01) in functional capillary density to 49.4 +/- 17.0 percent of control. No recovery was observed after 24 hours of reperfusion. Laser Doppler flowmetry (n = 12) showed a parallel reduction of capillary red blood cell flux during the early perfusion phase to 43.9 +/- 22.6 percent of control values (p less than 0.01), and no recovery was observed after 24 hours of reperfusion. However, the laser Doppler flowmetry technique was not able to detect the capillary perfusion inhomogeneities shown by intravital microscopy. Postischemic reperfusion in striated muscle is characterized by a decrease in functional capillary density and a heterogeneous capillary perfusion. Laser Doppler flowmetry is a useful tool for monitoring microvascular tissue perfusion, although in striated muscle of the hamster it must be considered that accurate nutritional "capillary" flow readings can be grossly overestimated if larger vessels, such as arterioles and collecting venules, are contained in the measuring field of the laser Doppler probe.  相似文献   

10.
Although the mechanism by which vascular delay benefits skin flaps is not completely understood, this topic has been extensively studied and reported on in the literature. In contrast, little has been documented about the effects of vascular delay in skeletal muscle flaps. Recent animal studies tested the effectiveness of vascular delay to enhance latissimus dorsi muscle flap viability for use in cardiomyoplasty and found that it prevented distal flap necrosis. However, these studies did not define the optimal time period necessary to achieve this beneficial effect. The purpose of this study was to determine how many days of "delay" can elicit the beneficial effects of vascular delay on latissimus dorsi muscle flaps. To accomplish this, 90 latissimus dorsi muscles of 45 male Sprague-Dawley rats were randomly subjected to vascular delay on one side or a sham procedure on the other. After predetermined delay periods (0, 3, 7, 10, and 14 days) or a sham procedure, all latissimus dorsi muscles were elevated as single pedicled flaps based only on their thoracodorsal neurovascular pedicle. Latissimus dorsi muscle perfusion was measured using a Laser Doppler Perfusion Imager just before and immediately after flap elevation. The muscles were then returned to their original vascular beds, isolated from adjacent tissue with Silastic film, sutured into place to maintain their original size and shape, and left there for 5 days. After 5 days, the latissimus dorsi muscle flaps were dissected free, scanned again (Laser Doppler Perfusion Imager-perfusion measurements), and the area of distal necrosis was measured using digitized planimetry of magnified images. The authors' results showed that delay periods of 3, 7, 10, and 14 days significantly increased (p < 0.05) blood perfusion and decreased (p < 0.05) distal flap necrosis when compared with sham controls. On the basis of these findings, the authors conclude that in their rat latissimus dorsi muscle flap model the beneficial effects of vascular delay are present as early as 3 days. If these findings also hold true in humans, they could be useful in cardiomyoplasty by allowing surgeons to shorten the amount of time between the vascular delay procedure and the cardiomyoplasty procedure in these very sick patients.  相似文献   

11.
Several lines of evidence show that platelet endothelial cell adhesion molecule-1 (PECAM-1), a component of endothelial cell junctions, is required for leukocyte transmigration through endothelial cell monolayers. Polymorphonuclear leukocytes play an important role in ischemia-reperfusion injury. We sought to determine whether administering an anti-PECAM-1 antibody would prevent or attenuate ischemia-reperfusion injury in a rat cremaster muscle flap injury model. Eighteen male Sprague-Dawley rats were divided into three groups. Group I (control): Cremaster muscle island flaps were dissected for baseline measurements of eight indicators: numbers of rolling, sticking, and transmigrating neutrophils, numbers of rolling and sticking lymphocytes, number of perfused capillaries, endothelial edema, and vessel permeability. Group II: The prepared cremaster flap was subjected to 4 hours of ischemia and 24 hours of reperfusion. Group III: The muscle flap was subjected to ischemia and reperfusion as in group II, and anti-PECAM-1 antibodies (1 mg/kg) were injected subcutaneously 15 minutes before reperfusion. Blood vessels were observed in vivo under an intravital microscopy system. Microvascular permeability was made visible with injected fluorescein isothiocyanate-labeled albumin and evaluated with Kontron Elektronik computer software. The ischemia-reperfusion-alone group (group II) presented a 225-percent increase in the activation of sticking leukocytes (2.4 +/- 0.4 to 7.8 +/- 0.8, p < 0.05) (p < 0.01). This leukocyte activation was reduced by 83 percent following anti-PECAM-1 monoclonal antibody treatment (1.3 +/- 0.5 per 100 microm) (p < 0.01). At 24 hours, endothelial injury in group II was confirmed by a 4-fold increase in the number of transmigrating leukocytes into the interstitial space (7.6 +/- 1.2 per field versus 1.9 +/- 0.4 per field in controls). This phenomenon was reduced by 85 percent following anti-PECAM-1 monoclonal antibody treatment (1.1 +/- 0.2 per field) (p < 0.01). Analysis showed that the number of flowing capillaries was 67 percent lower in group II (6.8 +/- 0.3 to 2.2 +/- 0.7, p < 0.01). Anti-PECAM-1 antibody treatment caused a 2.5-fold increase in this number (5.6 +/- 0.5, p < 0.01). Microcirculatory permeability index showed a 180-percent increase in group II (p < 0.05) when compared with baseline values. This increased albumin leakage was effectively attenuated by antibody treatment (p < 0.05). Blocking the action of PECAM-1 in vivo by administering monoclonal antibodies significantly attenuated ischemia-reperfusion injury, presumably by inhibiting transendothelial migration of neutrophils and by increasing capillary perfusion at a muscle flap microcirculatory level.  相似文献   

12.
In order to further improve the understanding of hemodynamic changes in the immediate postoperative phase after elevation of myocutaneous flaps, regional blood flow and arteriovenous (A-V) shunting were measured in rectus abdominis island flaps in 8 pigs. Radioactive microspheres of two sizes (15 and 50 micron) were used. Approximately half (53.4 +/- 6 percent) of the 15-micron microspheres and one-fourth (24.1 +/- 6 percent) of the 50-micron microspheres entering the flap appeared in the venous outflow. Compared with the control area, A-V shunting was significantly increased in muscle and substantially more pronounced in skin. Nutritional blood flow, total blood flow, and vascular volume were increased in muscle and unchanged in skin and subcutis. The lowest tissue hematocrit of 7 +/- 1 percent was found in skin as compared with a central hematocrit of 35 +/- 2 percent. Tissue hematocrit in flap muscle was decreased to 17 +/- 2 percent when compared with control muscle (22 +/- 3 percent), and the mean transit time for blood was correspondingly decreased. Thus vasodilation provided increased perfusion through muscular capillaries and through A-V shunts. Shunting of 15-micron microspheres appeared to take place not only in skin, but also in subcutis and muscle, which challenges the widespread belief that A-V shunting does not occur in muscle.  相似文献   

13.
The supply, consumption, and tissue tension of oxygen were studied in experimental bilateral myocutaneous island flaps in five control pigs and in eight pigs during progressive 1-hour intervals of flap ischemia. Progressive ischemia was obtained by partial to complete clamping of the artery in one flap, producing arterial insufficiency, and simultaneous clamping of the vein in the other flap, producing venous stasis. Blood flow was reduced to 50, 25, and 0 percent of baseline. In the arterial insufficiency flaps, the oxygen tension in subcutaneous tissue, muscle, and venous outflow was significantly reduced once blood flow was reduced to 50 percent of baseline. Oxygen consumption during partial vessel occlusion was lower in the venous stasis flaps than in the arterial insufficiency flaps when blood flow was reduced to 25 percent of baseline, suggesting either that cellular metabolism is reduced in the venous stasis flaps or that the oxygen which is delivered is unavailable for the cells. Increased presence of tissue fluid in the venous stasis flap inhibits the diffusion of oxygen through the interstitial tissue, and this may explain the lower oxygen consumption. During 3 hours of reperfusion, increased blood flow was observed in the arterial insufficiency flaps, whereas blood flow in the venous stasis flaps was sluggish. The arterial insufficiency flaps recovered more rapidly than the venous stasis flaps during the first hour of reperfusion, judged by the rate of increase in oxygen tension and the higher venous oxygen tension. Oxygen tension increased more rapidly in muscle than in subcutaneous tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
N R Harris  M S Webb  J W May 《Plastic and reconstructive surgery》1992,90(4):553-8; discussion 559-61
An intraoperative study was done to establish the functional and quantitative properties of the blood supply to the TRAM flap through the assessment and manipulation of blood flow through the deep epigastric arterial system. Seventeen patients undergoing unilateral postmastectomy breast reconstruction with lower transverse rectus abdominis myocutaneous (TRAM) flaps were studied. The study is divided into two parts: (1) ultrasonic measurement of blood flow in the deep inferior epigastric artery (DIEA), and (2) direct measurement of blood pressure in the deep epigastric arterial system, after division of the deep inferior epigastric artery. With occlusion of the superior epigastric artery at the level of the upper edge of the skin flap, 71 percent of the patients had a decrease in the blood flow through the deep inferior epigastric artery, with an average decrease of 23 percent. This implies that the area of watershed perfusion in the lower TRAM flap is superior to the umbilicus, and therefore, survival of all lower TRAM flap tissues requires reversal in the normal direction of arterial flow to the flap. The blood pressure in the proximal stump of the deep inferior epigastric arterial system averaged 46 percent of the mean systemic blood pressure. Occlusion of the medial and lateral thirds of the isolated rectus muscle decreased the mean arterial blood pressure in the flap an average of 19 percent in 80 percent of the individuals studied. These data support the technique of harvesting the entire rectus muscle, avoiding muscle-splitting maneuvers that may compromise axial blood flow.  相似文献   

15.
Recent experimental data have demonstrated improved flap survival following perfusion washout with a synthetic, chemically defined, mammalian plasma. In an effort to define the physiology responsible for the efficacy of perfusion, the method of "labeling" hyperpermeable blood vessels with Monastral blue B in rat epigastric vascular island flaps was utilized. Results confirmed that capillary and venular hyperpermeability is an early and progressive pathophysiologic event in ischemic flap tissue and one which is reversible prior to a critical ischemic period. Perfusion washout with a physiologic, acellular plasma substitute delays the onset of vascular hyperpermeability. This may be a mechanism responsible for improving tissue survival following extended periods of warm ischemia (12 hours). It is implied that stagnant blood and products of hemolysis in the microcirculation may be detrimental to the functional and anatomic integrity of the endothelial wall.  相似文献   

16.
Ischemia of the distal latissimus dorsi muscle flap occurs when the entire muscle is acutely elevated. Although this level of ischemia may not be critical if the muscle is to be used as a conventional muscle flap, the ischemia causes decreased distal muscle function if it is used for dynamic muscle flap transfer. This experiment was designed to determine whether or not the administration of exogenous basic fibroblast growth factor (bFGF), combined with a sublethal ischemic insult (i.e., vascular delay), would further augment muscle perfusion and function. Both latissimus dorsi muscles of nine canines were subjected to a bipedicle vascular delay procedure immediately followed by thoracodorsal intraarterial injection of 100 microg of bFGF on one side and by intraarterial injection of vehicle on the other. Ten days later, both latissimus dorsi muscles were raised as thoracodorsally based island flaps, with perfusion determined by laser-Doppler fluximetry. The muscles were wrapped around silicone chambers, simulating cardiomyoplasty, and stimulating electrodes were placed around each thoracodorsal nerve. The muscles were then subjected to an experimental protocol to determine muscle contractile function. At the end of the experiment, latissimus dorsi muscle biopsies were obtained for measurement of bFGF expression. The results demonstrated that the administration of 100 microg of bFGF immediately after the vascular delay procedure increases expression of native bFGF. In the distal and middle muscle segments, it also significantly increased muscle perfusion by approximately 20 percent and fatigue resistance by approximately 300 percent. The administration of growth factors may serve as an important adjuvant to surgical procedures using dynamic muscle flap transfers.  相似文献   

17.
The neutrophil has been implicated as a source of oxygen free radicals provoking the reperfusion injury in various ischemic organs. This provided the motivation to explore the pathophysiologic role of the neutrophil in a swine model of postischemic latissimus dorsi myocutaneous flaps. Neutrophil function, neutrophil sequestration, and the anatomic distribution of muscle injury were estimated following a 6- to 8-hour global ischemic insult. Neutrophil function as measured by phorbol myristate acetate-stimulated superoxide production was found to be enhanced on reperfusion of ischemic flaps (n = 17). Neutrophil sequestration estimated from the arterial-venous difference of flap blood (n = 12) demonstrated that postischemic flaps more avidly sequester neutrophils than nonischemic flaps. The anatomic distribution of muscle injury (n = 7) was predominantly localized to the proximal portion of the ischemic flap. The enhanced functional response exhibited by neutrophils reperfusing an ischemic myocutaneous flap supports an active neutrophil role in the mediation of reperfusion injury.  相似文献   

18.
Unilateral denervated myocutaneous island flaps based on the superior epigastric vessels were raised in 24 pigs and the metabolic changes during the first 6 postoperative hours were monitored. Secondary to flap elevation, decreased arteriovenous (A-V) differences in oxygen, glucose, and alanine levels were observed, indicating the opening of A-V shunts and increased arterialization of the venous blood. Venous outflow increased during the first 3 hours, but the A-V differences in all metabolites were constant over the entire 6-hour observation period. Exchange of intermediary metabolites therefore increased within the first 3 hours, after which a steady state was established. The main flap fuels seemed to be fatty acids, muscle proteins, and glycogen, whereas blood-borne carbohydrates and ketone bodies played only a minor role as energy sources. Anaerobic metabolism was increased secondary to flap elevation from 2 to 6 percent as compared with preelevation values. No changes were found in concentrations of plasma catecholamines, which were constantly high. An average weight gain of 3 to 4 percent per hour was equally distributed to skin, subcutis, panniculus carnosus, and muscle. Thus the flap seemed to adapt to the new perfusion pattern within a few hours by a slightly increased anaerobic metabolism, but still with an oxidative metabolism of more than 90 percent.  相似文献   

19.
Skin capillary blood flow and angiogenesis were studied by radioactive microsphere and morphometry technique, respectively, in delayed random skin flaps in the pig. Skin flaps were delayed for 2, 3, 4, 6, or 14 days. Blood flow was measured 6 hours after complete raising of acute and delayed random skin flaps on the opposite flanks of the same pig. It was observed that the capillary blood flow increased significantly (p less than 0.05) within 2 days of delay compared to the acute skin flaps. This capillary blood flow further increased by about 100 percent between days 2 and 3, started to plateau after day 3, and remained unchanged between days 4 and 14 of delay. This increase in capillary blood flow was mainly in the distal portion of the delayed skin flaps. There was no indication of an increase in the density of arteries in all delay periods studied. Our observations did not support the hypotheses that the delay phenomenon involves angiogenesis or long-term adaptation to ischemia, as have been hypothesized previously. The possible mechanism of delay is discussed.  相似文献   

20.
The authors have studied the effects of various circulatory settings on flap survival. The dog model was used to study the survival of venous flaps without arterial inflow both as island and free flaps. Venous flaps were compared with arterial flaps without venous outflow and standard island flaps with arterial inflow and venous outflow. Attempts were made to study their vascular morphology and blood gas changes. The venous flaps without arterial inflow survived with normal hair growth and wound healing, as did the standard island flaps. These observations suggest that capillary diffusion can occur without the continuous flow of blood through a capillary. Several possible mechanisms to explain survival of the venous flaps without arterial inflow were discussed. These observations could be important in providing an animal model to study microcirculation and a possible new area for microsurgical transfer of a skin flap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号