首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
It is known that vegetation plays an important role in the retention of heavy metals in salt marshes by taking up and accumulating the metals. In this study, we investigated whether arbuscular mycorrhizal fungi (AMF) increase Cd and Cu uptake and accumulation in the root system of the salt marsh species Aster tripolium L., and whether indigenous AMF isolated from polluted salt marshes have higher capacity to resist and alleviate metal stress in A. tripolium than isolates of the same species originated from non-polluted sites. Plants inoculated with Glomus geosporum, either isolated from a polluted salt marsh site (PL isolate) or from a non-polluted site (NP isolate), and non-mycorrhizal (NM) plants were compared in a pot experiment at four different Cd and Cu concentrations. Cd had no effect in root colonization, whereas high concentrations of Cu decreased colonization level in plants inoculated with the NP isolate. AM colonization did not increase plant dry weight or P concentration but influenced root Cd and Cu concentrations. Inoculation with PL and NP isolates enhanced root Cd and Cu concentrations, especially at highest metal addition levels, as compared to NM plants, without increasing shoot Cd and Cu concentrations. There was no evidence of intraspecific variation in the effects between AMF isolated from polluted and non-polluted sites, since there were no differences between plants inoculated with PL or NP isolate in any of the tested plant variables. The results of this study showed that AMF enhance metal accumulation in the root system of A. tripolium, suggesting a contribution of AMF to the sink of metals within vegetation in the salt marshes.  相似文献   

2.
Sengupta A  Chaudhuri S 《Mycorrhiza》2002,12(4):169-174
Mangroves are climax formation of hydrohalophytes inhabiting estuarine or marine salt marshes in the tropics and subtropics. As a terrestrial plant community inhabiting tidally inundated estuarine or marine sediments, mangroves show considerable adaptation to salinity, water-logging and nutrient stress. Thirty-one species of mangrove and mangrove associates and 23 species of transported flora, belonging to 25 families at four physiographic stages of succession of the mangrove plant community at the terminal part of the Ganges river estuary in India were examined for arbuscular mycorrhizal (AM) root association. Dominant members of the mangrove plant community were all AM, mostly with 'Paris' type structures. Many of the known non-mycotrophic plant families, except the Cyperaceae, also showed AM association, with intracellular hyphae and vesicles as the most discernible endophyte structures. Intensity of AM colonization varied both with the species and situations of their occurrence, being more intense and also more extensive in less saline dry ridge mangroves than in more saline formative and developed swamp mangroves. Introduced exotic trees on the ridges and embankments were infected by AM, but less than the declining mangroves in the same location. Seven species of AM fungi in common with those of the upstream mesophytic plants were isolated from root-free rhizosphere soils of the mangroves, three of which predominated in root association. These species, individually and as mixtures, infected roots of salinity tolerant herbs and trees in both locational silt and upstream alluvial soil with obvious improvements in their biomass yield and phosphorus nutrition. AM infective potential of root-free rhizosphere soils of the dominant members of the mangrove community were negatively related to salinity level of the sediment soil of the successional stages. The evidences of AM association of mangroves and other salt marsh plants obtained here and those reported elsewhere are discussed.  相似文献   

3.
A comprehensive appraisal of the mycorrhizal literature provides data for 336 plant families representing 99% of flowering plants, with regard to mycorrhizas and other nutritional adaptations. In total, arbuscular (AM), orchid, ectomycorrhizas (EM) and ericoid mycorrhizas and nonmycorrhizal (NM) roots occur in 74%, 9%, 2%, 1% and 6% of Angiosperm species respectively. Many families of NM plants have alternative nutritional strategies such as parasitism, carnivory, or cluster roots. The remaining angiosperms (8%) belong to families reported to have both AM and NM species. These are designated as NM-AM families here and tend to occur in habitats considered non-conducive to mycorrhizal fungi, such as epiphytic, aquatic, extremely cold, dry, disturbed, or saline habitats. Estimated numbers of species in each category of mycorrhizas is presented with lists of NM and EM families. Evolutionary trends are also summarised by providing data on all clades and orders of flowering and non-flowering vascular plants on a global scale. A case study of Western Australian plants revealed that plants with specialised nutritional modes such as carnivory, cluster roots, or EM were much more diverse in this ancient landscape with infertile soils than elsewhere. Detailed information on the mycorrhizal diversity of plants presented here is linked to a website (mycorrhizas.info) to allow data to remain current. Over a century of research effort has resulted in data on mycorrhizal associations of >10,000 plant species that are of great value, but also somewhat of a liability due to conflicting information about some families and genera. It is likely that these conflicts result in part from misdiagnosis of mycorrhizal associations resulting from a lack of standardisation in criteria used to define them. Families that contain both NM and AM species provide a second major source of inconsistency, but even when these are excluded there is a ~10% apparent error rate in published lists of mycorrhizal plants. Arbuscules are linked to AM misdiagnosis since they are used less often than vesicles to recognise AM associations in roots and apparently occur sporadically in NM plants. Key issues with the diagnosis of mycorrhizal plants are discussed using the Cyperaceae as a case study. Detailed protocols designed to consistently distinguish AM from endophytic Glomeromycotan Fungus Colonisation (GFC) are provided. This review aims to stimulate debate and provide advice to researchers delving into root biology.  相似文献   

4.
A survey of the arbuscular mycorrhizal (AM) status of plants growing in the Western Ghats region of Southern India was undertaken. Root and soil samples of plants growing in the four vegetation types forest, grassland, scrub, and cultivated land or plantation were examined. Of the 329 species (representing 61 families) examined, 174 were mycorrhizal. AM association was recorded in 81 species for the first time, including species from several families assumed to be non-mycorrhizal, e.g. Amaranthaceae, Capparaceae, Commelinaceae, Cyperaceae and Portulacaceae. AM fungal spores of 35 species belonging to Acaulospora, Gigaspora, Glomus, Sclerocystis and Scutellospora were recorded. AM fungal species richness was found to be highest in scrub and lowest in agricultural and plantation soils. Mean colonization levels were dependent on plant life-form, life-cycle pattern and vegetation type. Accepted: 26 October 1999  相似文献   

5.
6.
In New Caledonia, a hot spot of biodiversity, plants from the Cyperaceae family are mostly endemic and considered pioneers of the nickel-rich natural serpentine ecosystem. The aim of the study was to highlight the mycorrhizal status of these Cyperaceae and to bring new insights into the role of this symbiosis in plant tolerance to ultramafic soils. Nine Cyperaceae species were studied and presented evidence of root colonization by arbuscular mycorrhizas (AMs), with frequencies ranging from 8% to 57%. The highest level of AM colonization was observed in plants from the endemic dominant genus Costularia. Molecular evidence demonstrated the presence of Glomus sp. inside the roots. In a controlled greenhouse assay, AM inoculation of Costularia comosa grown under ultramafic conditions significantly enhanced plant growth, with an increase in biomass by up to 2.4-fold for shoots and 1.2-fold for roots, and also reduced nickel content in roots by 2.5-fold, as compared with the controls. All these data support our hypotheses (i) that a relationship exists between the mycorrhizal status of Cyperaceae and their habitat, and (ii) that AM have a positive role in plant tolerance to ultramafic soils (mineral nutrition and metal tolerance), suggesting the use of these pioneer plants with AM management as potential tools for nickel mine site rehabilitation in New Caledonia.  相似文献   

7.
A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg?1) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme). Shoot and root dry weights (SDW and RDW) decreased as Pb levels increased. Mycorrhizal inoculation increased SDW and RDW compared to NM control. With mycorrhizal inoculation and increasing Pb levels, Pb uptake of shoot and root increased compared to those of NM control. Root colonization increased with mycorrhizal inoculation but decreased as Pb levels increased. Phosphorus concentration and uptake in shoot of plants inoculated with AM fungi was significantly higher than NM control at 200 and 800 mg Pb kg?1. The Fe concentration, Fe and Mn uptake of shoot in plants inoculated with Rhizophagus intraradices in all levels of Pb were significantly higher than NM control. Mycorrhizal inoculation increased Pb extraction, uptake and translocation efficiencies. Lead translocation factor decreased as Pb levels increased; however inoculation with AM fungi increased Pb translocation.  相似文献   

8.
A greenhouse pot experiment with different phosphorus supply was conducted to study growth, photosynthesis and free polyamine (PA) content in Plantago lanceolata L. plants in relation to arbuscular mycorrhizal (AM) colonization. Inoculum of Glomus fasciculatum (BEG 53) was used. Inoculated plants had high colonization intensities which were related to the P supply. Non-mycorrhizal (NM) plants showed a typical yield response curve for P availability. Dry masses of mycorrhizal (M) plants were higher at the lowest soil P content than those of NM plants, but the opposite was found at the highest P supply. P contents in M plants were always higher. There were no differences in chlorophyll (Chl) concentrations (except the lowest soil P content) and ratios of variable to maximum Chl fluorescence (Fv/Fm) values between M and NM plants, whereas M plants had higher ratios of leaf area to fresh mass (A/f.m.) at low soil P contents and they had significantly higher CO2 fixation capacities per unit leaf area. Free putrescine (Put), spermidine (Spd) and spermine (Spm) contents in NM plants were usually highest at the lowest P supply. The ratios of Put/(Spd+Spm) were identical in M and NM leaves. They were significantly higher, however, in NM roots at the two low P doses. It is concluded, that a P nutritional status might exist, below which PA concentrations and ratio are increased drastically, possibly indicating P deficiency or a certain state of plant development with a higher demand for AM symbiosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The aim of this study is to investigate the effects of arbuscular mycorrhizal fungi (AMF) on garlic plants growth and the uptake of selenium (Se). Garlic plants were grown in the pots inoculated with Glomus fasciculatum and G. mosseae and maintained in a greenhouse. Three weeks after planting, the pots had received different concentrations of Se (5, 10, 15, 20, 25 mg kg?1 of soil) in the form of selenium dioxide (SeO2) at 3 weeks intervals up to 12 weeks. For physiological and biochemical analysis, the samples were randomly collected from five plants of each experiment. Maximum AM infection, spore population and plant biomass were observed in the roots of mycorrhizal-mediated plants without Se, and they were gradually declined in both mycorrhizal and non-mycorrhizal (NM) plants with increasing concentrations of Se. Among the two Glomus species tested, G. fasciculatum-mediated plants showed higher AM infection, spore population and plant biomass than G. mosseae. No differences were observed for the uptake of Se in mycorrhizal plants and NM plants. However, NM plants uptake more Se than mycorrhizal plants. Higher contents of total chlorophyll and sugars were observed in plants inoculated with G. fasciculatum without Se and they were decreased in the presence of Se. In contrast, increased amount of glutathione peroxidase was observed at increasing concentrations of Se up to 20 mg kg?1. High-performance liquid chromatography data revealed that SeO2 converted to organic form of Se as γ-glutamyl-Se-methylselenocysteine. These results are basis for further investigations on the role of AMF on plant growth and uptake of Se in crop plants.  相似文献   

10.
Abstract

Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.  相似文献   

11.
Milton W. Weller 《Ibis》1967,109(3):391-411
During an 11-month study of the Black-headed Duck in eastern Argentina, observations were made on the marsh birds of Cape San Antonio, Province of Buenos Aires. These observations supplement the distributional and life history obtained by Gibson (1879–1920), Wetmore (1926) and others. The deep, fresh-water marshes characteristically are dominated by one of three plants: tules, cutgrass or cat-tails. There were surprisingly few marshes with mixtures of these plants and few marshes which showed a gradual transition from marsh to uplands. Marsh birds showed considerable adaptation in chronology of nesting and nest-site selection for the seasonal water cycle of wet springs and dry periods in the late summer and fall. Some marsh birds were involved in nesting over a longer period than is usual in Northern Hemisphere marshes. As seems characteristic of all marsh birds, cover-water edges were usual sites for nests. There were only a few species with restricted nest-site selection, and competition between closely related species was noted only among the three species of coots. A list of the marsh birds of the area is given, and comments are presented on the ecology and behaviour of selected species.  相似文献   

12.
Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau   总被引:1,自引:0,他引:1  
Gai JP  Cai XB  Feng G  Christie P  Li XL 《Mycorrhiza》2006,16(3):151-157
The arbuscular mycorrhizal (AM) status of nine dominant sedge species and the diversity of AM fungi in Tibetan grassland were surveyed in the autumn of 2003 and 2004. Most of the sedge species and ecotypes examined were mycorrhizal, but Carex moorcroftii and Kobresia pusilla were of doubtful AM status, and Kobresia humilis was facultatively mycorrhizal. This is the first report of the mycorrhizal status of eight of the nine sedge species examined. Intraradical vesicles and aseptate hyphae were the structures most frequently observed. Appressoria, coils, and arbuscules were found in the roots of a few sedge species. A strong negative correlation was found between soil organic matter content and the extent of mycorrhizal colonization. Using trap cultures, 26 species of AM fungi belonging to six genera, Glomus, Acaulospora, Paraglomus, Archaeospora, Pacispora, and Scutellospora, were isolated from the soil samples collected. The frequency of occurrence of different taxa of AM fungi varied greatly. Glomus and Acaulospora were the dominant genera, and Acaulospora scrobiculata was the most frequent and abundant species. The species richness of AM fungi was 2.73 in the study area. Species richness and diversity index differed among the sedge species but were not correlated with soil factors such as pH, available P, or organic matter content.  相似文献   

13.
Arbuscular mycorrhizal fungal propagules in a salt marsh   总被引:6,自引:0,他引:6  
The tolerance of indigenous arbuscular mycorrhizal fungi (AMF) to stressful soil conditions and the relative contribution of spores of these fungi to plant colonization were examined in a Portuguese salt marsh. Glomus geosporum is dominant in this salt marsh. Using tetrazolium as a vital stain, a high proportion of field-collected spores were found to be metabolically active at all sampling dates. Spore germination tests showed that salt marsh spores were not affected by increasing levels of salinity, in contrast to two non-marsh spore isolates, and had a significantly higher ability to germinate under increased levels of salinity (20) than in the absence of or at low salinity (10). Germination of salt marsh spores was not affected by soil water levels above field capacity, in contrast to one of the two non-marsh spore isolates. For the evaluation of infectivity, a bioassay was established with undisturbed soil cores (containing all types of AM fungal propagules) and soil cores containing only spores as AM fungal propagules. Different types of propagules were able to initiate and to expand the root colonization of a native plant species, but spores were slower than mycelium and/or root fragments in colonizing host roots. The AM fungal adaptation shown by this study may explain the maintenance of AMF in salt marshes.  相似文献   

14.
Generally, soils in Pakistan are deficient in P and N. Due to intensive cropping and irrigation, Pakistani soils have also become deficient in micronutrients such as Zn, Fe, Cu, and Mn. Arbuscular mycorrhizal fungi, which form symbiotic associations with roots of most land plants, are known to enhance uptake of P and trace elements such as Cu, Ni, Pb, and Zn. The present study was conducted to investigate the role of arbuscular mycorrhizae (AM) in uptake of nickel (Ni) and zinc (Zn) by crops viz. soybean (Glycine max (L.) Merrill) and lentil (Lens culinaris Medic). Zn and Ni were applied as ZnSO4 7H2O and NiCl2 respectively, in four concentrations (0.0, 1.0, 3.0, and 5.0 g kg-1 soil). AM inoculum consisted of sand containing sporocarps, spores, and AMF infected root pieces from a pot culture of Glomus mosseae. Control plants received pot culture filtrate containing soil microflora minus AM fungal propagules. A significant difference (p < 0.05) was observed in the dry weights of roots and shoots of the mycorrhizal (M) and nonmycorrhizal (NM) cereal plants. The sievate-amended treatments did not stimulate plant growth to the same extent as the AM fungal amended treatments. Trace metals inhibited the extent of mycorrhizal colonization of the cereal roots. The concentrations of the trace metals in the plant tissues of 12-week old cereal plants were found significantly (p < 0.05) higher in M than NM plants. These results indicate that mycorrhize can be used as effective tools to supply sufficient Zn in generally Zn-deficient Pakistani soils and to ameliorate the toxicity of trace metals in polluted soils. The contents of Ni in mycorrhizal soybean plant tissues were higher than those in the mycorrhizal lentil plant tissues. The implications of these results in mycorrhizo remediation of agricultural soils are discussed.  相似文献   

15.
锡林河河漫滩草甸群落的结构与生产力及其排序   总被引:1,自引:0,他引:1       下载免费PDF全文
 锡林河河漫滩主要草甸群落的植物组成、群落构成规律、地上植物量、群落间生态关系的研究表明:1)踏头草甸以中间型荸荠(Eleocharis intersita)、无脉苔草(Carex enervis)、巨序剪股颖(Agrostis gigantea)和湿中生杂类草共同建群,其地上植物量为445.64gDM·m-2,是该区草原群落的2—4倍;密花凤毛菊(Saussurea acuminata)杂类草草甸的地上植物量为3584.50gFM·m-2(鲜重);马蔺(Iris lactea)杂类草草甸的地上现存量为1444.02gFM·m-2(鲜重)。2)与该区草原群落相比,草甸群落或没有单种建群植物,或单种建群植物的作用不很突出。说明了草甸优越的生境可满足多种植物共同充分生长。3)河漫滩不同草甸群落的排序表明:在积水生境中沼泽植被的外围、较为湿润的地段上分布着以莎草科植物为主的莎草(苔草)草甸;中度湿润的地段分布着以禾本科植物为主的禾草草甸;而相对较干的地段分布着以双子叶植物为主的杂类草草甸。  相似文献   

16.
Salt marshes form along coastlines and are very interesting ecosystems due to their function and services. In the future, salt marsh plants might provide food and medicine as crops irrigated via seawater in hyper-arid regions. In the Arabian Gulf, little is known about salt marsh vegetation. Therefore, a targeted search on scientific literature was performed to provide a comprehensive assessment. Hence, current knowledge of the extent and status of salt marsh in the Arabian Gulf region was reviewed, based on literature-based analysis. Then, historic trends of salt marsh publications were carefully inspected. This study provides a list of salt marsh families and their genera and species, with a total of 51 family 179 genera 316 species in the Arabian Gulf. The largest family was Chenopodiaceae followed by Poaceae, Asteraceae. Moreover, this study identified some of the gaps that could help future directions for scientific research, and help making decisions of conservation, management policies and procedures.  相似文献   

17.
Distribution of different mycorrhizal classes on Mount Koma, northern Japan   总被引:2,自引:0,他引:2  
Tsuyuzaki S  Hase A  Niinuma H 《Mycorrhiza》2005,15(2):93-100
To investigate the role of mycorrhizae in nutrient-poor primary successional volcanic ecosystems, we surveyed mycorrhizal frequencies on the volcano Mount Koma (42°04N, 140°42E, 1,140 m elevation) in northern Japan. After the 1929 eruptions, plant community development started at the base of the volcano. Ammonia and nitrate levels, along with plant cover, decreased with increasing elevation, whereas phosphorus did not. In total, 305 individuals of 56 seed plant species were investigated in three elevational zones (550–600 m, 650–700 m, and 750–800 m). Five mycorrhizal classes were classified based on morphological traits: ecto- (ECM), arbuscular (AM), arbutoid, ericoid, and orchid mycorrhiza. All plant species were mycorrhizal to at least some extent, with most widespread tree species being heavily ectomycorrhizal. In addition, of 16 tree species collected in all three zones, 6 differed in the frequencies of ECM on roots between elevational zones, and 3 of these 6 species increased in frequency with increasing elevation. These results suggest that ECM colonization in some tree species is related to establishment in nutrient-poor habitats. All species of Ericaceae and Pyrolaceae had ericoid mycorrhizae, and an Orchidaceae species had orchid mycorrhizae. Herbaceous species, except for the low mycorrhizal frequency of Carex oxyandra and two Polygonaceae species, and ericoid and orchid mycorrhizal species, were generally AM. Of herbaceous species, Anaphalis margaritacea var. angustior increased AM frequency and decreased ECM frequency with increasing elevation, and Hieracium umbellatum increased ECM frequency. In total, the establishment of herbaceous species was not sufficiently explained by AM colonization on roots. Tree individuals developed 2–3 classes of mycorrhizae more than herbs at each elevational zone. We conclude that the symbiosis between seed plants and mycorrhizae, ECM in particular, greatly influences plant community structures on Mount Koma. Not only a single mycorrhizal class, but combinations of mycorrhizal classes should be studied to clarify effects on plant community dynamics.  相似文献   

18.
Levels of arbuscular mycorrhizal (AM) colonization and dark septate endophyte (DSE) colonization were assessed in the vegetation recolonizing a remnant bottomland hardwood forest in north central Texas following a 100 year flood. Thirty seven plant species representing 21 dicotyledonous and 2 montocotyledonous families established following floodwater recession. AM and/or DSE were found in all species. AM colonization was found in 31 out of the 37 species assessed including both monocotyledonous families (Poaceae and Cyperaceae) and 17 out of 21 dicotyledonous families (Acanthaceae, Asteraceae, Boraginaceae, Cucurbitaceae, Euphorbiaceae, Lamiaceae, Loganiaceae, Lythraceae, Malvaceae, Onagraceae, Pedaliaceae, Ranunculaceae, Sapindaceae, Scrophulariaceae, Solanaceae, Verbanaceae and Violaceae). DSE were found in 31 out of 37 species assessed including both monocotyledonous families and 15 out of 21 dicotyledonous families (Amaranthaceae, Asteraceae, Boraginaceae, Brassicaceae, Cucurbitaceae, Euphorbiaceae, Lamiaceae, Lythraceae, Malvaceae, Pedaliaceae, Phytolaccaceae, Polygonaceae, Ranunculaceae, Sapindaceae, Scrophulariaceae and Violaceae). There were no detectable differences in AM or DSE colonization levels among wetland indicator groups (p > 0.05). Levels of DSE colonization were negatively correlated with vesicular colonization and hyphal colonization for the obligate wetland species. There were no other significant relationships between AM and DSE colonization detected. Spearman rank order correlation coefficients did not differ significantly among wetland indicatory category for any level of AM or DSE colonization.  相似文献   

19.
Positive interactions between cushion plant and associated plants species in the high Andes of central Chile should also include the effects of fungal root symbionts. We hypothesized that higher colonization by arbuscular mycorrhizal (AM) fungi exists in cushion-associated (nursling) plants compared with conspecific individuals growing on bare ground. We assessed the AM status of Andean plants at two sites at different altitudes (3,200 and 3,600 m a.s.l.) in 23 species, particularly in cushions of Azorella madreporica and five associated plants; additionally, AM fungal spores were retrieved from soil outside and beneath cushions. 18 of the 23 examined plant species presented diagnostic structures of arbuscular mycorrhiza; most of them were also colonized by dark-septate endophytes. Mycorrhization of A. madreporica cushions showed differences between both sites (68% and 32%, respectively). In the native species Hordeum comosum, Nastanthus agglomeratus, and Phacelia secunda associated to A. madreporica, mycorrhization was six times higher than in the same species growing dispersed on bare ground at 3,600 m a.s.l., but mycorrhiza development was less cushion dependent in the alien plants Cerastium arvense and Taraxacum officinale at both sites. The ratio of AM fungal spores beneath versus outside cushions was also 6:1. The common and abundant presence of AM in cushion communities at high altitudes emphasizes the importance of the fungal root symbionts in such situations where plant species benefit from the microclimatic conditions generated by the cushion and also from well-developed mycorrhizal networks.  相似文献   

20.
Question: Does the vegetation of restored salt marshes increasingly resemble natural reference communities over time? Location: The Essex estuaries, southeast England. Methods: Abandoned reclamations, where coastal defences had been breached in storm events, and current salt marsh recreation schemes were surveyed giving a chronosequence of salt marsh regeneration from 2 to 107 years. The presence, abundance and height of plant species were recorded and comparisons were made with adjacent reference salt marsh communities at equivalent elevations. Results: Of the 18 paired sites surveyed, 13 regenerated marshes had fewer species than their adjacent reference marsh, three had an equal number and two had more. The plant communities of only two de‐embankment sites matched that of the reference community. 0–50 year old sites and 51–100 year old sites had fewer species per quadrat than the 101+ year sites and the reference salt marshes. There was a weak relationship between differences in species richness for regenerated and reference marshes and the time since sites were first re‐exposed to tidal inundation. Cover values for the invasive and recently evolved Spartina anglica were greater within regenerated than reference marshes. Conclusions: Salt marsh plants will colonise formerly reclaimed land relatively quickly on resumption of tidal flooding. However, even after 100 years regenerated salt marshes differ in species richness, composition and structure from reference communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号