首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heavy and light chains of botulinum A toxin were separated by anion exchange chromatography. Their intracellular actions were studied using bovine adrenal chromaffin cells permeabilized with streptolysin O. Purified light chain inhibited the Ca2+-stimulated [3H]noradrenaline release with a half-maximal effect at about 1.8 nM. The inhibition was incomplete. Heavy chain up to 28 nM was neither effective by itself nor did it enhance the inhibitory effect of light chain. It is concluded that the light chain of botulinum A toxin contains the functional domain responsible for the inhibition of exocytosis.  相似文献   

2.
Chains and fragments of tetanus toxin, and their contribution to toxicity   总被引:4,自引:0,他引:4  
1. Single-chain toxin is enzymatically converted into two-chain isotoxins which differ from the precursor by their higher pharmacological activity, acidity and hydrophilicity. The interchain disulfide bridge and the disulfide loop within fragment C have been located at the amino acid level. 2. Independent of the enzymes used, the nicking sites are positioned within a region spanning no more than 17 amino acids. The N- and C-termini of the primary gene product are preserved in the two-chain toxin. The chains have been separated by isoelectric focussing and can be reconstituted to functionally intact toxin. 3. Light chain inhibits neurotransmitter release on different systems. First, permeabilized bovine adrenal chromaffin cells and rat pheochromocytoma (PC 12) cells release catecholamines when exposed to micromolar [Ca2+]. Inhibition is achieved with light chain or reduced two-chain toxin, but not with single-chain toxin or heavy chain. Washing away the light chain does not restitute the Ca2(+)-evoked release. The light chains of tetanus and botulinum A toxin act in a apparently similar, however not identical manner. Second, light but not heavy chain inhibits the release of acetylcholine when injected into Aplysia neurones. 4. The pharmacology of heavy chain is quite different. Ganglioside binding is mediated by its fragment C moiety, and modulated by the adjoining beta 2 piece and by light chain. Heavy chain and to a lesser degree its N-terminal beta 2-fragment promote the loss of calcein from liposomes indicating pore formation. Its C-terminal fragment C is inactive in this respect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous work indicates that the heavy chain of tetanus toxin is responsible for the binding of the toxin to the neuronal membrane and its subsequent internalization. In the present study, the light chain of tetanus toxin mimicked the holotoxin in inhibiting Ca2+-dependent secretion of [3H]norepinephrine from digitonin-permeabilized adrenal chromaffin cells. Preincubation of tetanus toxin with monoclonal antibodies to the light chain prevented the inhibition by tetanus toxin. Preincubation of tetanus toxin with nonimmune ascites fluid or with monoclonal antibodies directed against the C fragment (the C-terminal of the heavy chain) or the heavy-chain portion of the B fragment did not prevent inhibition by tetanus toxin. The data indicate that the light chain is responsible for the intracellular blockade of exocytosis.  相似文献   

4.
The tetanus toxin light chain inhibits exocytosis   总被引:12,自引:0,他引:12  
The intracellular action on exocytosis of various forms of tetanus toxin was studied using adrenal medullary chromaffin cells, the membrane barrier of which has been removed by permeabilization with streptolysin O. Such cells still release catecholamines on stimulation with calcium. The two-chain form of tetanus toxin (67 nmol/l) strongly inhibited exocytosis, but only if dithiothreitol was present as a reducing agent. Purified light chain completely prevented [3H]noradrenaline release with a half-maximal effect at about 5 nmol/l. Heavy chain (up to 11 nmol/l) and unprocessed single-chain toxin (up to 133 nmol/l) were without effect. It is concluded that the original single-chain form of tetanus toxin has to be processed by proteolysis and reduction to yield a light chain which inhibits transmitter release.  相似文献   

5.
C McInnes  J O Dolly 《FEBS letters》1990,261(2):323-326
Permeabilisation of PC12 cells with digitonin allowed a direct study of the intracellular action of botulinum neurotoxin A, one of a group of dichain proteins produced by Clostridium botulinum that causes the fatal neuroparalytic condition, botulism. Release of [3H]noradrenaline from these permeabilised cells could be evoked by Ca2+ and this was inhibited specifically by the neurotoxin in a dose-dependent manner (half-maximal dose approximately 2 nM under the conditions used). Inclusion of the reducing agent dithiothreitol (up to 10 mM) had no effect on the level of inhibition. Moreover, electrophoretic analysis showed that this treatment of the toxin in the native state caused negligible reduction of inter-chain disulphide bonds. Toxin-induced blockade of neurotransmitter release was incomplete and could not be overcome by increased Ca2+ concentration (100 microM). The observed toxin-insensitivity of the release from intact PC12 cells must result from inefficient toxin uptake, relative to that in peripheral cholinergic neurones. Refolded light chain alone inhibited exocytosis to the same degree and with similar potency to that of the intact neurotoxin, an effect not altered by the heavy chain. This inhibitory activity of the light chain in PC12 cells accords with observations made in permeabilised chromaffin cells [(1989) J. Biol. Chem. 264, 10354-10360; (1989) FEBS Lett. 255, 391-394] but contrasts with invertebrate neurones, where intracellular injection of the same preparations of both chains were necessary for inhibition of quantal release of acetylcholine [(1988) Proc. Natl. Acad. Sci. USA 85, 4090-4094]. These collective findings may signify an interesting difference in the release process in such diverse systems or denote a dissimilarity in the transport or processing of the toxin when applied into intact neurones or cells permeabilised by detergent or streptolysin.  相似文献   

6.
A procedure is described for the purification of hemagglutinin-free Clostridium botulinum type C toxin. The toxin was purified approximately 1,000-fold from the original culture supernatant in an overall yield of 60% to a final specific toxicity of 4.4 x 10(7) minimal lethal doses/mg of protein. The toxin had a molecular weight of 141,000 and consisted of a heavy and a light chain. The molecular weights of the subunits were approximately 98,000 and 53,000. When comparing the molecular size and composition of type C toxin to that of botulinum toxins of different types, some common features may be suggested; i.e., the toxin has a molecular weight between 141,000 to 160,000 and is comprised of a heavy and a light chain linked by disulfide bonds (or bond).  相似文献   

7.
Isolation and molecular size of Clostridium botulinum type C toxin.   总被引:7,自引:3,他引:7       下载免费PDF全文
A procedure is described for the purification of hemagglutinin-free Clostridium botulinum type C toxin. The toxin was purified approximately 1,000-fold from the original culture supernatant in an overall yield of 60% to a final specific toxicity of 4.4 x 10(7) minimal lethal doses/mg of protein. The toxin had a molecular weight of 141,000 and consisted of a heavy and a light chain. The molecular weights of the subunits were approximately 98,000 and 53,000. When comparing the molecular size and composition of type C toxin to that of botulinum toxins of different types, some common features may be suggested; i.e., the toxin has a molecular weight between 141,000 to 160,000 and is comprised of a heavy and a light chain linked by disulfide bonds (or bond).  相似文献   

8.
《The Journal of cell biology》1994,125(5):1015-1024
Cellubrevin is a member of the synaptobrevin/VAMP family of SNAREs, which has a broad tissue distribution. In fibroblastic cells it is concentrated in the vesicles which recycle transferrin receptors but its role in membrane trafficking and fusion remains to be demonstrated. Cellubrevin, like the synaptic vesicle proteins synaptobrevins I and II, can be cleaved by tetanus toxin, a metallo-endoprotease which blocks neurotransmitter release. However, nonneuronal cells are unaffected by the toxin due to lack of cell surface receptors for its heavy chain. To determine whether cellubrevin cleavage impairs exocytosis of recycling vesicles, we tested the effect of tetanus toxin light chain on the release of preinternalized transferrin from streptolysin-O-perforated CHO cells. The release was found to be temperature and ATP dependent as well as NEM sensitive. Addition of tetanus toxin light chain, but not of a proteolytically inactive form of the toxin, resulted in a partial inhibition of transferrin release which correlated with the toxin-mediated cleavage of cellubrevin. The residual release of transferrin occurring after complete cellubrevin degradation was still ATP dependent. Our results indicate that cellubrevin plays an important role in the constitutive exocytosis of vesicles which recycle plasmalemma receptors. The incomplete inhibition of transferrin release produced by the toxin suggests the existence of a cellubrevin-independent exocytotic mechanism, which may involve tetanus toxin-insensitive proteins of the synaptobrevin/VAMP family.  相似文献   

9.
The extracellular fluid phase marker, horseradish peroxidase, enters chromaffin cells when triggered to secrete catecholamine. This triggered uptake, like secretion, is abolished in cells pre-incubated with botulinum toxin. Endocytosis of horseradish peroxidase into unstimulated cells is unaffected by botulinum toxin but is inhibited when the temperature is reduced. Once internalised by the unstimulated cells, horseradish peroxidase is released back into the extracellular fluid, the rate of release being temperature sensitive but unaffected by carbamylcholine or botulinum toxin. These results suggest that triggered exocytosis is a necessary event to precede triggered endocytosis, and that botulinum toxin may affect only the triggered exocytosis/endocytosis cycle and not the constitutive cycle.  相似文献   

10.
Tetanus and botulinum neurotoxins are the most potent toxins known. They bind to nerve cells, penetrate the cytosol and block neurotransmitter release. Comparison of their predicted amino acid sequences reveals a highly conserved segment that contains the HexxH zinc binding motif of metalloendopeptidases. The metal content of tetanus toxin was then measured and it was found that one atom of zinc is bound to the light chain of tetanus toxin. Zinc could be reversibly removed by incubation with heavy metal chelators. Zn2+ is coordinated by two histidines with no involvement in cysteines, suggesting that it plays a catalytic rather than a structural role. Bound Zn2+ was found to be essential for the tetanus toxin inhibition of neurotransmitter release in Aplysia neurons injected with the light chain. The intracellular activity of the toxin was blocked by phosphoramidon, a very specific inhibitor of zinc endopeptidases. Purified preparations of light chain showed a highly specific proteolytic activity against synaptobrevin, an integral membrane protein of small synaptic vesicles. The present findings indicate that tetanus toxin, and possibly also the botulinum neurotoxins, are metalloproteases and that they block neurotransmitter release via this protease activity.  相似文献   

11.
A pool of synthetic oligonucleotides was used to identify the gene encoding tetanus toxin on a 75-kbp plasmid from a toxigenic non-sporulating strain of Clostridium tetani. The nucleotide sequence contained a single open reading frame coding for 1315 amino acids corresponding to a polypeptide with a mol. wt of 150,700. In the mature toxin molecule, proline (2) and serine (458) formed the N termini of the 52,288 mol. wt light chain and the 98,300 mol. wt heavy chain, respectively. Cysteine (467) was involved in the disulfide linkage between the two subchains. The amino acid sequences of the tetanus toxin revealed striking homologies with the partial amino acid sequences of botulinum toxins A, B, and E, indicating that the neurotoxins from C. tetani and C. botulinum are derived from a common ancestral gene. Overlapping peptides together covering the entire tetanus toxin molecule were synthesized in Escherichia coli and identified by monoclonal antibodies. The promoter of the toxin gene was localized in a region extending 322 bp upstream from the ATG codon and was shown to be functional in E. coli.  相似文献   

12.
Tetanus toxin was digested with papain, yielding one major polypeptide (Fragment C) with a molecular weight corresponding to 47,000 +/- 5%, thus comprising about one-third of the toxin molecule. Fragment C was antigenically active, atoxic, and stimulated the formation of antibodies neutralizing the lethal action of tetanus toxin in vivo. Furthermore, a second split product (Fragment B) was isolated from the papain digest, containing two polypeptide chains linked together via a disulfide bond. Fragment B (Mr = 95,000 +/- 5%) was atoxic and showed a reaction of nonidentity with Fragment C on immunodiffusion analysis against tetanus antitoxin. The basic two-chain structure (heavy and light chain polypeptide, cf. Matsuda, M., and Yoneda, M. (1975) Infect. Immun. 12, 1147-1153) of tetanus toxin has been confirmed and the relationship between Fragments B and C within this framework has been established. Fragment C was distinguished from the light chain by electrophoresis in sodium dodecyl sulfate and by immunodiffusion analysis, indicating that this fragment constitutes a portion of the heavy chain polypeptide. Fragment B showed a reaction of partial identity with the light as well as the heavy chain from tetanus toxin. Reduction of Fragment B with dithiothreitol followed by gel chromatography yielded a fraction which was indistinguishable from the light chain portion of the toxin molecule. It is concluded that Fragment B comprises the complementary portion of the heavy chain (remaining after scission of the polypeptide bond(s) releasing Fragment C) linked to the light chain by a disulfide bond.  相似文献   

13.
We have used carbon-fibre amperometry to examine the kinetics of individual secretory granule fusion/release events in bovine adrenal chromaffin cells. Transfection with plasmids encoding the light chains of botulinum neurotoxins (BoNTs) was used to investigate the effects of cleavage of syntaxin or SNAP-25 on exocytosis. Expression of BoNT/C1 or BoNT/E inhibited the extent of exocytosis that was evoked by application of digitonin/Ca(2+) to permeabilise and stimulate single chromaffin cells. Following neurotoxin expression, the residual release events were no different from those of control cells in their magnitude and kinetics from analysis of the amperometric spikes. In contrast, activation of protein kinase C (PKC) resulted in a modification of the kinetics of single granule release events. Following phorbol ester treatment, the amperometric spikes showed a significant decrease in their total charge due to a decrease in their mean half-width with increases in the rate of the initial rise and also the fall to baseline of the spikes. These changes were prevented by pre-treatment with the PKC inhibitor bisindolylmaleimide. These results suggest that PKC regulates the rate of fusion pore expansion and also subsequent pore closure or granule retrieval. A PKC-mediated regulation of kiss-and-run fusion may, therefore, control the extent of catecholamine release from single secretory granules. The experimental approach used here may provide further information on the protein constituents and regulation of the fusion pore machinery.  相似文献   

14.
15.
Nucleotides are released not only from neurons, but also from various other types of cells including fibroblasts, epithelial, endothelial and glial cells. While ATP release from non-neural cells is frequently Ca2+ independent and mostly non-vesicular, neuronal ATP release is generally believed to occur via exocytosis. To evaluate whether nucleotide release from neuroendocrine cells might involve a non-vesicular component, the autocrine/paracrine activation of P2Y12 receptors was used as a biosensor for nucleotide release from PC12 cells. Expression of a plasmid coding for the botulinum toxin C1 light chain led to a decrease in syntaxin 1 detected in immunoblots of PC12 membranes. In parallel, spontaneous as well as depolarization-evoked release of previously incorporated [3H]noradrenaline from transfected cells was significantly reduced in comparison with the release from untransfected cells, thus indicating that exocytosis was impaired. In PC12 cells expressing the botulinum toxin C1 light chain, ADP reduced cyclic AMP synthesis to the same extent as in non-transfected cells. Likewise, the enhancement of cyclic AMP synthesis either due to the blockade of P2Y12 receptors or due to the degradation of extracellular neucleotides by apyrase was not different between non-transfected and botulinum toxin C1 light chain expressing cells. However, the inhibition of cyclic AMP synthesis caused by depolarization-evoked release of endogenous nucleotides was either abolished or greatly reduced in cells expressing the botulinum toxin C1 light chain. Together, these results show that spontaneous nucleotide release from neuroendocrine cells may occur independently of vesicle exocytosis, whereas depolarization-evoked nucleotide release relies predominantly on exocytotic mechanisms.  相似文献   

16.
Neurotransmitter release involves the assembly of a heterotrimeric SNARE complex composed of the vesicle protein synaptobrevin (VAMP 2) and two plasma membrane partners, syntaxin 1 and SNAP-25. Calcium influx is thought to control this process via Ca(2+)-binding proteins that associate with components of the SNARE complex. Ca(2+)/calmodulin or phospholipids bind in a mutually exclusive fashion to a C-terminal domain of VAMP (VAMP(77-90)), and residues involved were identified by plasmon resonance spectroscopy. Microinjection of wild-type VAMP(77-90), but not mutant peptides, inhibited catecholamine release from chromaffin cells monitored by carbon fibre amperometry. Pre-incubation of PC12 pheochromocytoma cells with the irreversible calmodulin antagonist ophiobolin A inhibited Ca(2+)-dependent human growth hormone release in a permeabilized cell assay. Treatment of permeabilized cells with tetanus toxin light chain (TeNT) also suppressed secretion. In the presence of TeNT, exocytosis was restored by transfection of TeNT-resistant (Q(76)V, F(77)W) VAMP, but additional targeted mutations in VAMP(77-90) abolished its ability to rescue release. The calmodulin- and phospholipid-binding domain of VAMP 2 is thus required for Ca(2+)-dependent exocytosis, possibly to regulate SNARE complex assembly.  相似文献   

17.
Extract tetanus toxin, filtrate tetanus toxin, and the heavy and light chains of filtrate toxin were analyzed for their amino termini with 4-N,N-dimethylaminoazobenzene-4′isothiocyanate and phenylisothiocyanate. Extract toxin (intracellular toxin) is a single-chain polypeptide with proline as the amino terminus. Filtrate toxin (extracellular toxin) is a mixture of species produced by endogenous proteases, and showed three major amino terminal residues, proline, asparagine, and serine. Cleavage points in the filtrate toxin molecule appear to be on either side of a disulfide bond. Reductive and nonreductive preparative electrophoresis of filtrate toxin produce different species of light and heavy chains. The light chains have a single amino terminus of proline, indicating that the light chain is the amino terminal portion of the toxin molecule. The heavy chains showed no proline but rather asparagine and serine as the major amino termini. Small amounts of other amino terminal residues were present, indicating microheterogenity at the cleavage sites in the toxin. The results permit the construction of a model of tetanus toxin which is consistent with the fragments obtained from either reductive or nonreductive preparative electrophoresis of filtrate toxin.  相似文献   

18.
Tetanus toxin is a potent neurotoxin that inhibits the release of neurotransmitters from presynaptic nerve endings. The mature toxin is composed of a heavy and a light chain that are linked via a disulfide bridge. After entry of tetanus toxin into the cytoplasm, the released light chain causes block of neurotransmitter release. Recent evidence suggests that the L-chain may act as a metalloendoprotease. Here we demonstrate that blockade of neurotransmission by tetanus toxin in isolated nerve terminals is associated with a selective proteolysis of synaptobrevin, an integral membrane protein of synaptic vesicles. No other proteins appear to be affected by tetanus toxin. In addition, recombinant light chain selectively cleaves synaptobrevin when incubated with purified synaptic vesicles. Our data suggest that cleavage of synaptobrevin is the molecular mechanism of tetanus toxin action.  相似文献   

19.
Treatment of rat cerebrocortical synaptosomes with botulinum toxin types E and C1 or tetanus toxin removed the majority of intact SNAP-25, syntaxin 1A/1B, and synaptobrevin and diminished Ca(2+)-dependent K+ depolarization-induced noradrenaline secretion. With botulinum toxin type E, <10% of intact SNAP-25 remained and K(+)-evoked release of glutamate and GABA was inhibited. The large component of noradrenaline release evoked within 120 s by inclusion of the Ca2+ ionophore A23187 with the K+ stimulus was also attenuated by these toxins; additionally, botulinium neurotoxin type E blocked the first 60 s of ionophore-induced GABA and glutamate exocytosis. However, exposure to A23187 for longer periods induced a phase of secretion nonsusceptible to any of these toxins (>120 s for noradrenaline; >60 s for glutamate or GABA). Most of this late phase of release represented exocytosis because of its Ca2+ dependency, ATP requirement, and sensitivity to a phosphatidylinositol 4-kinase inhibitor. Based on these collective findings, we suggest that the ionophore-induced elevation of [Ca2+]i culminates in the disassembly of complexes containing nonproteolyzed SNAP receptors protected from the toxins that can then contribute to neuroexocytosis.  相似文献   

20.
Tetanus toxin, a potent neurotoxin which blocks neurotransmitter release in the CNS, also inhibits Ca2+-induced catecholamine release from digitonin-permeabilized, but not from intact bovine chromaffin cells. In searching for intracellular targets for the toxin we studied the binding of affinity-purified tetanus toxin to bovine adrenal chromaffin granules. Tetanus toxin bound in a neuraminidase-sensitive fashion to intact granules and to isolated granule membranes, as assayed biochemically and visualized by electron microscopic techniques. The binding characteristics of the toxin to chromaffin granule membranes are very similar to the binding of tetanus toxin to brain synaptosomal membranes. We suggest that the toxin-binding site is a glycoconjugate of the G1b type (a polysialoganglioside or a glycoprotein-proteoglycan) which is localized on the cytoplasmic face of the granule membrane and might directly be involved in exocytotic membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号