首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2,2'-dipyridyl-induced accumulation of protoporphyrin IX in Saccharomyces cerevisiae cells was shown to be accompanied by the photoinhibition of cell respiration and the enhancement of the photoinduced permeability of plasma membranes to the fluorescent dye primuline. The visible-light illumination (at 400-600 nm) of the mitochondria and plasma membranes isolated from yeast cells with a high level of endogenous protoporphyrin IX intensified lipid peroxidation in these subcellular organelles. Comparative studies showed that the rad 52 mutant cells, which are deficient in the postreplicative recombinational DNA repair system, are considerably more sensitive to the inactivating action of visible light than are the wild-type cells and the rad 3 mutant cells, which are deficient in the excision DNA repair system. The contribution of photodynamic damage to the yeast subcellular organelles to the lethal photodynamic effect is discussed.  相似文献   

2.
The 2,2"-dipyridyl-induced accumulation of protoporphyrin IX in Saccharomyces cerevisiae cells was shown to be accompanied by the photoinhibition of cell respiration and the enhancement of the photoinduced permeability of plasma membranes to the fluorescent dye primuline. The visible-light illumination (at 400–600 nm) of the mitochondria and plasma membranes isolated from yeast cells with a high level of endogenous protoporphyrin IX intensified lipid peroxidation in these subcellular organelles. Comparative studies showed that the rad 52 mutant cells, which are deficient in the postreplicative recombinational DNA repair system, are considerably more sensitive to the inactivating action of visible light than are the wild-type cells and the rad 3 mutant cells, which are deficient in the excision DNA repair system. The contribution of photodynamic damage to the yeast subcellular organelles to the lethal photodynamic effect is discussed.  相似文献   

3.
The goal of the work was to study the sensitivity of isogenic Escherichia coli cells differing in their ability to mediate DNA repair steps to the action of visible light sensitized by chlorine e6. Cells incapable of excision repair as well as those deficient in post-replicative recombination DNA repair were found to be much more sensitive to the combined action of visible light and chlorine e6 as compared to cells whose genes responsible for DNA repair were not damaged. The results indicate that visible light damages bacterial DNA in the presence of chlorine e6.  相似文献   

4.
I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.  相似文献   

5.
6.
Cleaver JE 《DNA Repair》2004,3(2):183-187
Most forms of the human hereditary disease xeroderma pigmentation (XP) are due to a defect in nucleotide excision repair of DNA damage in skin cells associated with exposure to sunlight. This discovery by James Cleaver had an important impact on our understanding of nucleotide excision repair in mammals.  相似文献   

7.
Friedberg EC 《DNA Repair》2004,3(2):183, 195
Most forms of the human hereditary disease xeroderma pigmentosum (XP) are due to a defect in nucleotide excision repair of DNA damage in skin cells associated with exposure to sunlight. This discovery by James Cleaver had an important impact on our understanding of nucleotide excision repair in mammals.  相似文献   

8.
The frequency of leu----Leu+ reversions represented mainly by suppressor mutations is increased in Bacillus subtilis uvr+ and uvr-1 cells after exposure to natural sunlight. Dependence of mutation yield on the time of exposure is linear (one hit kinetics) in case of the uvr-1 strain. In the uvr+ cells the yield of mutations is also linear, but only at short times of exposure, the curve bending and levelling off the plateau after 10-min cell illumination. It has been established in the experiments with optical filters that the mutagenic effect is related to wavelengths which correspond to the UVB zone of ecological UV. The mutagenesis caused by sunlight can be modified (weakened) by some post-irradiation treatments of bacteria, which also led to a decrease of mutations frequencies in B. subtilis uvr+ and uvr-1 cells after exposure to 254-nm UV. The data indicate that: 1) mutagenic influence of sunlight can be overcome only by the joint action of activities of the two cellular repair systems--photoreactivation and excision repair, 2) the real mutagenic effect of sunlight on such a non-photoreactivating organism as B. subtilis would not be enhanced with the increase of the UVB flow in sunlight spectrum.  相似文献   

9.
Membrane-specific drugs such as procaine and chlorpromazine have been shown to inhibit excision repair of DNA in u.v.-irradiated E. coli. One possible mechanism is that, if association of DNA with the cell membrane is essential for excision repair, this process may be susceptible to drugs affecting the structure of cell membranes. We examined the effect of phenethyl alcohol, which is a membrane-specific drug and known to dissociate the DNA-membrane complex, on excision repair of DNA in u.v.-irradiated E. coli cells. The cells were irradiated with u.v. light and then held at 30 degrees C in buffer (liquid-holding) in the presence or absence of phenethyl alcohol. It was found that phenethyl alcohol inhibits the liquid-holding recovery in both wild-type and recA strains, corresponding to its dissociating action on the DNA-membrane complex. Thus, the association of DNA with cell membrane is an important factor for excision repair in E. coli. Procaine did not show the dissociating effect, suggesting that at least two different mechanisms are responsible for the involvement of cell membrane in excision repair of DNA in E. coli.  相似文献   

10.
Twelve cigarette smoke condensate fractions were tested for their ability to inhibit replicative DNA synthesis and DNA excision repair synthesis in cultures of human fibroblasts and Swiss mouse embryo cells. None of the fractions showed any specificity for the inhibition of DNA repair and, in general, repair synthesis was less sensitive to inhibition than was replicative synthesis. There was some correlation between the inhibitory action of the various fractions and their activity in bioassays performed in other laboratories, including in vitro cell transformation and bacterial mutagenicity. In most cases, DNA synthesis in the human cells was more sensitive to inhibition than it was in the mouse cells. The specific compounds in the condensate fractions which are responsible for their activity have not been identified.  相似文献   

11.
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.  相似文献   

12.
Bacillus subtilis strains UVSSP-42-1 (hcr42 ssp1) and UVSSP-1-1 (hcr1 ssp1) are ultraviolet (UV) radiation sensitive both as dormant spores and as vegetative cells. These strains are unable to excise cyclobutane-type dimers from the deoxyribonucleic acid (DNA) of irradiated vegetative cells and fail to remove spore photoproduct from the DNA of irradiated spores either by excision (controlled by gene hcr) or by spore repair (controlled by gene ssp1). When irradiated soon after spore germination, these strains excise dimers, but not spore photoproduct, from their DNA. This process, termed germinative excision repair, functions only transiently in the germination phase and is responsible for the high UV resistance of germinated spores and for their temporary capacity to host cell reactivate irradiated phages infecting them. The recA1 mutation confers higher UV sensitivity to the germinated spores, but does not interfere with dimer removal by germinative excision repair.  相似文献   

13.
The RAD3 gene of Saccharomyces cerevisiae, which is involved in excision repair of DNA and is essential for cell viability, was mutagenized by site-specific and random mutagenesis. Site-specific mutagenesis was targeted to two regions near the 5' and 3' ends of the coding region, selected on the basis of amino acid sequence homology with known nucleotide binding and with known specific DNA-binding proteins, respectively. Two mutations in the putative nucleotide-binding region and one in the putative DNA-binding region inactivate the excision repair function of the gene, but not the essential function. A gene encoding two tandem mutations in the putative DNA-binding region is defective in both excision repair and essential functions of RAD3. Seven plasmids were isolated following random mutagenesis with hydroxylamine. Mutations in six of these plasmids were identified by gap repair of mutant plasmids from the chromosome of strains with previously mapped rad3 mutations, followed by DNA sequencing. Three of these contain missense mutations which inactivate only the excision repair function. The other three carry nonsense mutations which inactivate both the excision repair and essential functions. Collectively our results indicate that the RAD3 excision repair function is more sensitive to inactivation than is the essential function. Overexpression of wild-type Rad3 protein and a number of rad3 mutant proteins did not affect the UV resistance of wild-type yeast cells. However, overexpression of Rad3-2 protein rendered wild-type cells partially UV sensitive, indicating that excess Rad3-2 protein is dominant to the wild-type form. These and other results suggest that Rad3-2 protein retains its affinity for damaged DNA or other substrates, but is not catalytically active in excision repair.  相似文献   

14.
Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency – with particular reference to NER and skin cancer risk.  相似文献   

15.
Base excision repair (BER) and nucleotide excision repair (NER) are two main cellular responses to DNA damage induced by various physical and chemical factors. After exposure of the strain that carries the NER-blocking rad2 mutation to UV light, several mutants hypersensitive to the UV light lethal action and simultaneously sensitive to methylmethanesulphonate (MMS) were isolated. Two of these mutants (Uvs64 and Uvs212) were examined in detail. The mutants were found to carry recessive, monogenically inherited lesions that had pleiotropic, though different, phenotypes: both mutants were also sensitive to nitrous acid (HNO2), whereas Uvs212 was sensitive to hydrogen peroxide as well. Moreover, the homozygote for the uvs212 mutation, but not for uvs64, blocks the sporulation. Since the mutations examined were not allelic to any of the known rad mutations that cause MMS sensitivity or to each other, it is concluded that two new genes involved in the control of yeast DNA repair were detected. Furthermore, these genes were mapped to different regions of the right arm of chromosome 2 where repair genes were not found. Thus, two new genes, designated RAD29(UVS64) and RAD31(UVS212) and probably involved in base excision repair, were identified.  相似文献   

16.
The effect on DNA repair of several inhibitors of DNA synthesis has been investigated in CHO cells. Three assays were employed following ultraviolet irradiation of G1 cells: unscheduled DNA synthesis, removal of antibody binding sites and alkaline elution. Cytosine arabinoside and aphidicolin were found to reduce unscheduled DNA synthesis in a dose-dependent manner without affecting the removal of antibody-binding sites. Strand rejoining was also inhibited. These results are consistent with the hypothesis that inhibition is due to premature chain termination during repair synthesis some time after excision of the lesion. Conversely, inhibition of unscheduled DNA synthesis by novobiocin is paralleled by inhibition of excision of the lesion. However, no inhibition of incision was apparent. Since nalidixic acid, an inhibitor of topoisomerase II, did not inhibit excision, it is unlikely that the primary site of action of novobiocin is this topoisomerase. The possibility that a second topoisomerase and/or a polymerase are affected is discussed in the light of previously published data.  相似文献   

17.
DNA polymerase beta is required in mammalian cells for the predominant pathway of base excision repair involving single nucleotide gap filling DNA synthesis. Here we examine the relationship between oxidative stress, cellular levels of DNA polymerase beta and base excision repair capacity in vitro , using mouse monocytes and either wild-type mouse fibroblasts or those deleted of the DNA polymerase beta gene. Treatment with an oxidative stress-inducing agent such as hydrogen peroxide, 3-morpholinosydnonimine, xanthine/xanthine oxidase or lipopolysaccharide was found to increase the level of DNA polymerase beta in both monocytes and fibroblasts. Base excision repair capacity in vitro , as measured in crude cell extracts, was also increased by lipopolysaccharide treatment in both cell types. In monocytes lipopolysaccharide-mediated up-regulation of the base excision repair system correlated with increased resistance to the monofunctional DNA alkylating agent methyl methanesulfonate. By making use of a quantitative PCR assay to detect lesions in genomic DNA we show that lipopolysaccharide treatment of fibroblast cells reduces the incidence of spontaneous DNA lesions. This effect may be due to the enhanced DNA polymerase beta-dependent base excision repair capacity of the cells, because a similar decrease in DNA lesions was not observed in cells deficient in base excision repair by virtue of DNA polymerase beta gene deletion. Similarly, fibroblasts treated with lipopolysaccharide were more resistant to methyl methanesulfonate than untreated cells. This effect was not observed in cells deleted of the DNA polymerase beta gene. These results suggest that the DNA polymerase beta-dependent base excision repair pathway can be up-regulated by oxidative stress-inducing agents in mouse cell lines.  相似文献   

18.
Lack of effect of hydroxyurea on base excision repair in mammalian cells   总被引:1,自引:0,他引:1  
The effect of hydroxyurea on the initial steps of base excision repair has been examined in mammalian cells in 3 different proliferative states: i.e., quiescent cells, asynchronously growing cells undergoing multiple divisions prior to confluence; and synchronous cell populations undergoing the first cell cycle(s) after release from quiescence. Two parameters of the base excision repair pathway were examined: (1) The direct excision of 7-methylguanine from cellular DNA in the presence of increasing hydroxyurea concentrations was quantitated by high performance liquid chromatography; (2) the effects of hydroxyurea on the uracil DNA glycosylase were examined by quantitating the levels of this base excision repair enzyme in quiescent and proliferating cells. In quiescent cells, hydroxyurea at concentrations routinely used to quantitate DNA repair had no effect on the excision rates of 7-methylguanine examined over a span of 3 days; nor was there any effect on the specific activity of uracil DNA glycosylase in confluent cells. In asynchronously proliferating mammalian cells, identical hydroxyurea concentrations had no effect on the induction of the glycosylase. In synchronous growing cells HU had no effect on the temporal sequence of induction of uracil DNA glycosylase prior to DNA replication, nor on the extent of this induction. These results suggest that hydroxyurea at concentrations generally used to measure DNA repair has no effect on base excision repair.  相似文献   

19.
Ribonucleotides are incorporated into the genome during DNA replication. The enzyme RNase H2 plays a critical role in targeting the removal of these ribonucleotides from DNA, and defects in RNase H2 activity are associated with both genomic instability and the human autoimmune/inflammatory disorder Aicardi-Goutières syndrome. Whether additional general DNA repair mechanisms contribute to ribonucleotide removal from DNA in human cells is not known. Because of its ability to act on a wide variety of substrates, we examined a potential role for canonical nucleotide excision repair in the removal of ribonucleotides from DNA. However, using highly sensitive dual incision/excision assays, we find that ribonucleotides are not efficiently targeted by the human nucleotide excision repair system in vitro or in cultured human cells. These results suggest that nucleotide excision repair is unlikely to play a major role in the cellular response to ribonucleotide incorporation in genomic DNA in human cells.  相似文献   

20.
A novel form of "enzyme therapy" was achieved by utilizing protoplasts of Bacillus subtilis. Photoreactivating enzyme of Escherichia coli was successfully inserted into the protoplasts of B. subtilis treated with polyethylene glycol. This enzyme was used to photoreactivate ultraviolet-damaged bacteriophage deoxyribonucleic acid (DNA). Furthermore, in polyethylene glycol-treated protoplasts, ultraviolet-irradiated transfecting bacteriophage DNA was shown to be a functional substrate for the host DNA excision repair system. Previous results (R. E. Yasbin, J. D. Fernwalt, and P. I. Fields, J. Bacteriol. 137:391-396, 1979) showed that ultraviolet-irradiated bacteriophage DNA could not be repaired via the excision repair system of competent cells. Therefore, the processing of bacteriophage DNA by protoplasts and by competent cells must be different. This sensitive protoplast assay can be used to identify and to isolate various types of DNA repair enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号