首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu(42), an amino acid that participates in intersubunit interactions in the CRP pentamer and is buried, to Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to investigate the functions of CRP in defined animal models of inflammatory diseases including atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally altered proteins, including ox-LDL, and available animal models may not have sufficient acidosis or other possible modifiers of the pentameric structure of CRP at the sites of inflammation.  相似文献   

2.
To study the mode of action of the binary toxin (51- and 42-kDa) of Bacillus sphaericus, amino acid residues were substituted at selected sites of the N- and C-terminal regions of both peptides. Bioassay results of the mutant binary toxins tested against mosquito larvae, Culex quinquefasciatus, revealed that most of the substitutions made on both peptides led to either decrease or total loss of the activity. Furthermore, receptor binding studies carried out for some of the mutants of the 42-kDa peptide showed mutations in N- and C-terminal regions of the 42-kDa peptide did not affect the binding of the binary toxin to brush border membrane vesicles of mosquito larvae. One of the mutants having a single amino acid substitution at the C-terminal region ((312)R) of the 42-kDa peptide completely abolished the biological activity, implicating the role of this residue in membrane pore formation. These results indicate the importance of the C-terminal region of the 42-kDa of binary toxin, in general, and particularly the residue (312)R for biological activity against mosquito larvae.  相似文献   

3.
4.
Rouhier N  Gelhaye E  Jacquot JP 《FEBS letters》2002,511(1-3):145-149
Six mutants (Y26A, C27S, Y29F, Y29P, C30S and Y26W/Y29P) have been engineered in order to explore the active site of poplar glutaredoxin (Grx) (Y26CPYC30). The cysteinic mutants indicate that Cys 27 is the primary nucleophile. Phe is a good substitute for Tyr 29, but the Y29P mutant was inactive. The Y26A mutation caused a moderate loss of activity. The YCPPC and WCPPC mutations did not improve the reactivity of Grx with the chloroplastic NADP-malate dehydrogenase, a well known target of thioredoxins (Trxs). The results are discussed in relation with the known biochemical properties of Grx and Trx.  相似文献   

5.
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase.  相似文献   

6.
Two novel toxins, Lqh6 and Lqh7, isolated from the venom of the scorpion Leiurus quinquestriatus hebraeus, have in their sequence a molecular signature (8Q/KPE10) associated with a recently defined group of alpha-toxins that target Na channels, namely the alpha-like toxins [reviewed in Gordon, D., Savarin, P., Gurevitz, M. & Zinn-Justin, S. (1998) J. Toxicol. Toxin Rev. 17, 131-159]. Lqh6 and Lqh7 are highly toxic to insects and mice, and inhibit the binding of alpha-toxins to cockroach neuronal membranes. Although they kill rodents by intracerebroventricular injection, they do not inhibit the binding of antimammal alpha-toxins (e.g. Lqh2) to rat brain synaptosomes, not even at high concentrations. Furthermore, in voltage-clamp experiments, rat brain Na channels IIA (rNav1.2A) expressed in Xenopus oocytes are not affected by Lqh6 nor by Lqh7 below 3 micro m. In contrast, muscular Na channels (rNav1.4 and hNav1.5) expressed in the same cells respond to nanomolar concentrations of Lqh6 and Lqh7 by slowing of Na current inactivation and a leftward shift of the peak conductance-voltage curve. The structural and pharmacological properties of the new toxins are compared to those of other scorpion alpha-toxins in order to re-examine the hallmarks previously set for the alpha-like toxin group.  相似文献   

7.
Fibronectin's RGD-mediated binding to the alpha5beta1 integrin is dramatically enhanced by a synergy site within fibronectin III domain 9 (FN9). Guided by the crystal structure of the cell-binding domain, we selected amino acids in FN9 that project in the same direction as the RGD, presumably toward the integrin, and mutated them to alanine. R1379 in the peptide PHSRN, and the nearby R1374 have been shown previously to be important for alpha5beta1-mediated adhesion (Aota, S., M. Nomizu, and K.M. Yamada. 1994. J. Biol. Chem. 269:24756-24761). Our more extensive set of mutants showed that R1379 is the key residue in the synergistic effect, but other residues contribute substantially. R1374A decreased adhesion slightly by itself, but the double mutant R1374A-R1379A was significantly less adhesive than R1379A alone. Single mutations of R1369A, R1371A, T1385A, and N1386A had negligible effects on cell adhesion, but combining these substitutions either with R1379A or each other gave a more dramatic reduction of cell adhesion. The triple mutant R1374A/P1376A/R1379A had no detectable adhesion activity. We conclude that, in addition to the R of the PHRSN peptide, other residues on the same face of FN9 are required for the full synergistic effect. The integrin-binding synergy site is a much more extensive surface than the small linear peptide sequence.  相似文献   

8.
To contribute to the understanding of glutamate synthase and of beta subunit-like proteins, which have been detected by sequence analyses, we identified the NADPH-binding site out of the two potential ADP-binding regions found in the beta subunit. The substitution of an alanyl residue for G298 of the beta subunit of Azospirillum brasilense glutamate synthase (the second glycine in the GXGXXA fingerprint of the postulated NADPH-binding site) yielded a protein species in which the flavin environment and properties are unaltered. On the contrary, the binding of the pyridine nucleotide substrate is significantly perturbed demonstrating that the C-terminal potential ADP-binding fold of the beta subunit is indeed the NADPH-binding site of the enzyme. The major effect of the G298A substitution in the GltS beta subunit consists of an approximately 10-fold decrease of the affinity of the enzyme for pyridine nucleotides with little or no effect on the rate of the enzyme reduction by NADPH. By combining kinetic measurements and absorbance-monitored equilibrium titrations of the G298A-beta subunit mutant, we conclude that also the positioning of its nicotinamide portion into the active site is altered thus preventing the formation of a stable charge-transfer complex between reduced FAD and NADP(+). During the course of this work, the Azospirillum DNA regions flanking the gltD and gltB genes, the genes encoding the GltS beta and alpha subunits, respectively, were sequenced and analyzed. Although the Azospirillum GltS is similar to the enzyme of other bacteria, it appears that the corresponding genes differ with respect to their arrangement in the chromosome and to the composition of the glt operon: no genes corresponding to E. coli and Klebsiella aerogenes gltF or to Bacillus subtilis gltC, encoding regulatory proteins, are found in the DNA regions adjacent to that containing gltD and gltB genes in Azospirillum. Further studies are needed to determine if these findings also imply differences in the regulation of the glt genes expression in Azospirillum (a nitrogen-fixing bacterium) with respect to enteric bacteria.  相似文献   

9.
The principal transport protein for T4 in human blood, thyroxine-binding globulin (TBG), binds T4 with an exceptionally high affinity (Ka = 10(10) M(-1)). Its homology to the superfamily of the serpins has recently been used in the design of chimeric proteins, providing experimental evidence that an eight-stranded beta-barrel domain encompasses the ligand-binding site. We have now characterized the T4 binding site by site-directed mutagenesis. Sequence alignment of TBG from several species revealed a phylogenetically highly conserved stretch of amino acids comprising strands 2B and 3B of the beta-barrel motif. Mutations within this region (Val228Glu, Cys234Trp, Thr235Trp, Thr235Gln, Lys253Ala, and Lys253Asp), designed to impose steric hindrance or restriction of its mobility, had no significant influence on T4 binding. However, binding affinity was 20-fold reduced by introduction of an N-linked glycosylation site at the turn between strands 2B and 3B (Leu246Thr) without compromising the proper folding of this mutant as assessed by immunological methods. In most other serpins, this glycosylation site is highly conserved and has been shown to be crucial for cortisol binding of corticosteroid-binding globulin, the only other member of the serpins with a transport function. The ligand-binding site could thus be located to a highly aromatic environment deep within the beta-barrel. The importance of the binding site's aromatic character was investigated by exchanging phenylalanines with alanines. Indeed, these experiments revealed that substitution of Phe249 in the middle of strand 3B completely abolished T4 binding, while the substitution of several other phenylalanines had no effect.  相似文献   

10.
CD38 is a ubiquitous protein originally identified as a lymphocyte antigen and recently also found to be a multifunctional enzyme participating in the synthesis and metabolism of two Ca(2+) messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate. It is homologous to Aplysia ADP-ribosyl cyclase, where the crystal structure has been determined. Residues of CD38 corresponding to those at the active site of the Aplysia cyclase were mutagenized. Changing Glu-226, which corresponded to the catalytic residue of the cyclase, to Asp, Asn, Gln, Leu, or Gly eliminated essentially all enzymatic activities of CD38, indicating it is most likely the catalytic residue. Photoaffinity labeling showed that E226G, nevertheless, retained substantial NAD binding activity. The secondary structures of these inactive mutants as measured by circular dichroism were essentially unperturbed as compared with the wild type. Other nearby residues were also investigated. The mutants D147V and E146L showed 7- and 19-fold reduction in NADase activity, respectively. The cADPR hydrolase activity of the two mutants was similarly reduced. Asp-155, on the other hand, was crucial for the GDP-ribosyl cyclase activity since its substitution with either Glu, Asn, or Gln stimulated the activity 3-15-fold, whereas other activities remained essentially unchanged. In addition to these acidic residues, two tryptophans were also important, since all enzyme activities of W125F, W125Y, W189G and W189Y were substantially reduced. This is consistent with the two tryptophans serving a substrate positioning function. A good correlation was observed when the NADase activity of all the mutants was plotted against the cADPR hydrolase activity. Homology modeling revealed all these critical residues are clustered in a pocket near the center of the CD38 molecule. The results indicate a strong structural homology between the active sites of CD38 and the Aplysia cyclase.  相似文献   

11.
Human glutamate carboxypeptidase II [GCPII (EC 3.4.17.21)] is recognized as a promising pharmacological target for the treatment and imaging of various pathologies, including neurological disorders and prostate cancer. Recently reported crystal structures of GCPII provide structural insight into the organization of the substrate binding cavity and highlight residues implicated in substrate/inhibitor binding in the S1' site of the enzyme. To complement and extend the structural studies, we constructed a model of GCPII in complex with its substrate, N-acetyl-l-aspartyl-l-glutamate, which enabled us to predict additional amino acid residues interacting with the bound substrate, and used site-directed mutagenesis to assess the contribution of individual residues for substrate/inhibitor binding and enzymatic activity of GCPII. We prepared and characterized 12 GCPII mutants targeting the amino acids in the vicinity of substrate/inhibitor binding pockets. The experimental results, together with the molecular modeling, suggest that the amino acid residues delineating the S1' pocket of the enzyme (namely Arg210) contribute primarily to the high affinity binding of GCPII substrates/inhibitors, whereas the residues forming the S1 pocket might be more important for the 'fine-tuning' of GCPII substrate specificity.  相似文献   

12.
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.  相似文献   

13.
The alpha-like toxin from the venom of the scorpion Leiurus quinquestriatus hebraeus (Lqh III) binds with high affinity to receptor site 3 on insect sodium channels but does not bind to rat brain synaptosomes. The binding affinity of Lqh III to cockroach neuronal membranes was fivefold higher at pH 6.5 than at pH 7.5. This correlated with an increase in the electropositive charge on the toxin surface resulting from protonation of its four histidines. Radioiodination of Tyr(14) of Lqh III abolished its binding to locust but not cockroach sodium channels, whereas the noniodinated toxin bound equally well to both neuronal preparations. Radioiodination of Tyr(10) or Tyr(21) of the structurally similar alpha-toxin from L. quinquestriatus hebraeus (LqhalphaIT), as well as their substitution by phenylalanine, had only minor effects on binding to cockroach neuronal membranes. However, substitution of Tyr(21), but not Tyr(14), by leucine decreased the binding affinity of LqhalphaIT approximately 87-fold. Thus, Tyr(14) is involved in the bioactivity of Lqh III to locust receptor site 3 and is not crucial for the binding of LqhalphaIT to this site. In turn, the aromatic ring of Tyr(21) takes part in the bioactivity of LqhalphaIT to insects. These results highlight subtle architectural variations between locust and cockroach receptor site 3, in addition to previous results demonstrating the competence of Lqh III to differentiate between insect and mammalian sodium channel subtypes.  相似文献   

14.

Background  

Laccases have huge potential for biotechnological applications due to their broad substrate spectrum and wide range of reactions they are able to catalyze. These include, for example, the formation and degradation of dimers, oligomers, polymers, and ring cleavage as well as oxidation of aromatic compounds. Potential applications of laccases include detoxification of industrial effluents, decolorization of textile dyes and the synthesis of natural products by, for instance, dimerization of phenolic acids. We have recently published a report on the cloning and characterization of a CotA Bacillus licheniformis laccase, an enzyme that catalyzes dimerization of phenolic acids. However, the broad application of this laccase is limited by its low expression level of 26 mg l-1 that was achieved in Escherichia coli. To counteract this shortcoming, random and site-directed mutagenesis have been combined in order to improve functional expression and activity of CotA.  相似文献   

15.
The affinity of scorpion alpha-toxins for various voltage-gated sodium channels (Na(v)s) differs considerably despite similar structures and activities. It has been proposed that key bioactive residues of the five-residue-turn (residues 8-12) and the C-tail form the NC domain, whose topology is dictated by a cis or trans peptide-bond conformation between residues 9 and 10, which correlates with the potency on insect or mammalian Na(v)s. We examined this hypothesis using Lqh3, an alpha-like toxin from Leiurus quinquestriatus hebraeus that is highly active in insects and mammalian brain. Lqh3 exhibits slower association kinetics to Na(v)s compared with other alpha-toxins and its binding to insect Na(v)s is pH-dependent. Mutagenesis of Lqh3 revealed a bi-partite bioactive surface, composed of the Core and NC domains, as found in other alpha-toxins. Yet, substitutions at the five-residue turn and stabilization of the 9-10 bond in the cis conformation did not affect the activity. However, substitution of hydrogen-bond donors/acceptors at the NC domain reduced the pH-dependency of toxin binding, while retaining its high potency at Drosophila Na(v)s expressed in Xenopus oocytes. Based on these results and the conformational flexibility and rearrangement of intramolecular hydrogen-bonds at the NC domain, evident from the known solution structure, we suggest that acidic pH or specific mutations at the NC domain favor toxin conformations with high affinity for the receptor by stabilizing the bound toxin-receptor complex. Moreover, the C-tail flexibility may account for the slower association rates and suggests a novel mechanism of dynamic conformer selection during toxin binding, enabling alpha-like toxins to affect a broad range of Na(v)s.  相似文献   

16.
The large cytotoxins of Clostridia species glycosylate and thereby inactivate small GTPases of the Rho family. Clostridium difficile toxins A and B and Clostridium sordellii lethal toxin use UDP-glucose as the donor for glucosylation of Rho/Ras GTPases. In contrast, alpha-toxin from Clostridium novyi N-acetylglucosaminylates Rho GTPases by using UDP-N-acetylglucosamine as a donor substrate. Based on the crystal structure of C. difficile toxin B, we studied the sugar donor specificity of the toxins by site-directed mutagenesis. The changing of Ile-383 and Gln-385 in toxin B to serine and alanine, respectively, largely increased the acceptance of UDP-N-acetylglucosamine as a sugar donor for modification of RhoA. The K(m) value was reduced from 960 to 26 mum for the double mutant. Accordingly, the potential of the double mutant of toxin B to hydrolyze UDP-N-acetylglucosamine was higher than that for UDP-glucose. The changing of Ile-383 and Gln-385 in the lethal toxin of C. sordellii allowed modification of Ras in the presence of UDP-N-acetyl-glucosamine and reduced the acceptance of UDP-glucose as a donor for glycosylation. Vice versa, the changing of the equivalent residues in C. novyi alpha-toxin from Ser-385 and Ala-387 to isoleucine and glutamine, respectively, reversed the donor specificity of the toxin from UDP-N-acetylglucosamine to UDP-glucose. These data demonstrate that two amino acid residues are crucial for the co-substrate specificity of clostridial glycosylating toxins.  相似文献   

17.
Better understanding of proteins'' structure/function relationship and dissecting their functional domains are still challenges yet to be mastered. Site-directed mutagenesis approaches that can alter bases at precise positions on the gene sequence can help to reach this goal. This article describes an efficient strategy that can be applied not only for both deletion and substitution of target amino acids, but also for insertion of point mutations in promoter regions to study cis-regulating elements. This method takes advantage of the plasticity of the genetic code and the use of compatible restriction sites.Key words: site-directed mutagenesis, restriction site, cloning, PCRUnderstanding the proteins structure/function relationship and dissecting their functional domains is one of the biggest challenges to current proteomic studies.1 This is mainly achieved by site-directed mutagenesis experiments that can alter bases at precise positions on the gene sequence.2 Modifying DNA sequences has become feasible with PCR amplification.3 During the last decade, several strategies have been developed to simplify this approach and increase its efficiency.4 The introduction of a site-directed mutation can be realized by one or more PCR reactions. Most of the strategies used in site-directed mutagenesis are based on a substitution of a single base, which leads to a change in one amino acid. This article describes an efficient strategy that can be applied for either deletion or substitution of target amino acids. This strategy is based on performing PCR reactions to create a new restriction site in the sequence of origin, corresponding to the desired mutation. The choice of the restriction site to be created depends on the nature of the amino acid that one desires to introduce in the protein sequence. Since such restriction sites may extend beyond the mutated codon. The preservation of the other codon is done by taking advantage of the plasticity of the genetic code where one amino acid can be encoded by multiple codons.This method was performed in two steps (Fig. 1). In the first step, the DNA sequence of interest, cloned in a plasmid, served as a template for two PCR reactions. Two PCR products are generated. The first one consists of the beginning of the sequence, from the start codon to the mutagenized amino acid codon, where the forward primer bears the start codon region and the reverse primer bears the newly introduced restriction site at the same location of the mutagenized codon. The second PCR product consists of the end of the coding sequence, from the mutagenized amino acid codon to the stop codon. This fragment is generated using a forward primer bearing the same new restriction site as the first PCR product''s reverse primer, and a reverse primer bearing the stop codon region. The two PCR products were cloned separately into a vector in the appropriate orientation. In the second step, the cloning vector bearing the first PCR product was digested with a restriction enzyme site in the vector, and by the restriction enzyme corresponding to the restriction site created by the reverse primer used in the PCR reaction. The resulting fragment was cloned into the vector containing the second PCR fragment, predigested with same two restriction enzymes. The whole mutagenized coding sequence is reassembled by in-frame subcloning of the 3′ end of the coding sequence downstream the 5′ end. All the PCR products were generated using the high fidelity Pfu DNA Polymerase (Promega, Madison, WI USA). For any site-directed mutagenesis experiment, this two-step cloning procedure requires the use of appropriate PCR primers that harbor the desired mutation of the target amino acid. These primers are partially overlapping and contain a common or complementary restriction site enabling the in-frame assembly of the whole coding sequence.Open in a separate windowFigure 1Mutagenesis strategy by restriction enzyme site insertion. (A) In the first step, two PCR products were generated using the full length coding sequence as template. The mutation is carried by the two primers b and c, which are flanked by the same or compatible restriction enzyme''s site (white segment). Both PCR products are separately cloned in the cloning vector in the appropriate orientation. In the second step, the whole mutagenized coding sequence is reassembled by in-frame sub cloning of the 3′ end of the coding sequence downstream the 5′ end. (B) Substitution of threonine by arginine as a result of the insertion of a BglII restriction site. DNA sequencing is carried out to make sure that only the desired change is introduced in the coding sequence. (B-1) The sequence of the native cDNA. (B-2) the sequence of the mutagenized cDNA included BglII restriction site sequence.This approach has been used in a recent study to address the structure/function relationship of the STAS domain of the Arabidopsis thaliana Sultr1;2 sulfate transporter.5 A good example of this approach is the replacement of the threonine-serine couple at position 587–588 with an arginine-serine couple. The codon for threonine is: TGT, and that for arginine is: TCT. Serine can be encoded by both TCA and AGA codons. The chosen restriction site used for the reassembly of the whole coding sequence is that of the BglII enzyme: TCT AGA. The insertion of this restriction site enables the substitution of the Thr in position 587 with an Arg while preserving the serine residue in position 588. The BglII restriction site is introduced in the reverse primer and the forward primer used to generate the first and second PCR products respectively. The DNA sequence of the reassembled mutagenized cDNA was checked by sequencing. Than it was expressed, under pGAL1O promoter bearing by pYES2 vector, in yeast mutant deficient in sulfate transporter and the mutagenic protein was detected by imunodetection.Bioinformatic study reveals that this method can be applied to checked a large number of substitutions, insertions or deletions and that finding the right restriction site is not a limiting factor (data no shown).In conclusion, this article describes an efficient two-step procedure for site-directed mutagenesis using primers bearing a restriction site, which is absent from the sequence of origin. The primers flanked by sequences introducing the same or compatible restriction sites mediate the incorporation of the mutation at the selection site. The choice of the restriction site depends on the nature of the desired mutation: insertion, substitution or deletion of an amino acid in a particular position. This strategy can be also used to insert point mutations in promoter regions to study cis-regulating elements.  相似文献   

18.
Constitutive NADH oxidase proteins of the mammalian cell surface exhibit two different activities, oxidation of hydroquinones (or NADH) and protein disulfide-thiol interchange which alternate to yield oscillatory patterns with period lengths of 24 min. A drug-responsive tNOX (tumor-associated NADH oxidase) has a period length of about 22 min. The tNOX cDNA has been cloned and expressed. These two proteins are representative of cycling oxidase proteins of the plant and animal cell surface. In this report, we describe a series of eight amino acid replacements in tNOX which, when expressed in Escherichia coli, were analyzed for enzymatic activity, drug response and period length. Replacement sites selected include six cysteines that lie within the processed plasma membrane (34 kDa) form of the protein, and amino acids located in putative drug and adenine nucleotide (NADH) binding domains. The latter, plus two of the cysteine replacements, resulted in a loss of enzymatic activity. The recombinant tNOX with the modified drug binding site retained activity but the activity was no longer drug-responsive. The four remaining cysteine replacements were of interest in that both activity and drug response were retained but the period length for both NADH oxidation and protein disulfide-thiol interchange was increased from 22 min to 36 or 42 min. The findings confirm the correctness of the drug and adenine nucleotide binding motifs within the tNOX protein and imply a potential critical role of cysteine residues in determining the period length.  相似文献   

19.
Activated coagulation factor V functions as a cofactor to factor Xa in the conversion of prothrombin to thrombin. Based on the introduction of extra carbohydrate side chains in recombinant factor V, we recently proposed several regions in factor Va to be important for factor Xa binding. To further define which residues are important for factor Xa binding, we prepared fifteen recombinant factor V variants in which clusters of charged amino acid residues were mutated, mainly to alanines. The factor V variants were expressed in COS-1 cells, and their functional properties evaluated in a prothrombinase-based assay, as well as in a direct binding test. Four of the factor V variants, 501A/510A/511D, 501A/510A/511D/513A, 513A/577A/578A, and 501A/510A/511D/513A/577A/578A exhibited markedly reduced factor Xa-cofactor activity tested in the prothrombinase assay, and reduced binding affinity as judged by the direct binding assay. These factor Va variants were normally cleaved at Arg-506 by activated protein C, and the interaction between the factor Xa-factor Va complex and prothrombin was unaffected by the introduced mutations. Based on the integration of all available data, we propose a key factor Xa binding surface to be centered on Arg-501, Arg-510, Ala-511, Asp-513, Asp-577, and Asp-578 in the factor Va A2 domain. These residues form an elongated charged factor Xa binding cluster on the factor Va surface.  相似文献   

20.
R Shapiro  B L Vallee 《Biochemistry》1992,31(49):12477-12485
Chemical modifications of human angiogenin had suggested that arginines are essential for its ribonucleolytic activity [Shapiro, R., Weremowicz, S., Riordan, J. F., & Vallee, B. L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 8783-8787]. Each of the six arginines within or near angiogenin's catalytic or cell-binding sites--i.e., those at positions 5, 31, 32, 33, 66, and 70--was therefore mutated to alanine. Two of these residues, Arg-5 and Arg-33, indeed play a role, albeit noncrucial, in enzymatic activity, although neither one is implicated in the abolition of activity by arginine reagents. R5A-angiogenin, while nearly fully active toward dinucleotides, is one-fourth as active as angiogenin toward tRNA, suggesting that Arg-5 may participate in the binding of peripheral components of the substrate. In contrast, the activity of R33A-angiogenin toward both polynucleotide and dinucleotide substrates is reduced similarly, reflecting a decrease in kcat. These results, together with its position in the calculated three-dimensional structure of angiogenin, imply an indirect role for Arg-33 in catalysis. Three arginines are important for angiogenesis: mutation of Arg-5, Arg-33, or Arg-66 dramatically reduces the angiogenic potency of angiogenin on the chicken embryo chorioallantoic membrane. Arg-66 lies within a segment previously proposed to be part of a cell-surface receptor binding site. Arg-5 and Arg-33 are outside of this site as defined at present, and the decreased angiogenicity of R5A- and R33A-angiogenin may be a consequence of their reduced ribonucleolytic activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号