首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous report, we have demonstrated that simultaneous inhibition of nucleoside transport and adenosine deaminase accumulates endogenous adenosine and protects the myocardium against stunning. The differential cardioprotective effects of erythro-9(2-hydroxy-3-nonyl)-adenine (EHNA), a potent inhibitor of adenosine deamination but not transport, and p-nitrobenzylthioinosine (NBMPR), a selective blocker of adenosine and inosine transport, are not known.Thirty-seven anaesthetized adult dogs were instrumented to monitor left ventricular performance using sonomicrometery. Dogs were randomly assigned into four groups. The control group (n = 8) received only the vehicle solution. Treated groups received saline containing 100 M EHNA (EHNA-group, n = 7), 25 M NBMPR (NBMPR-group, n = 7), or a combination of 100 M EHNA and 25 M NBMPR (EHNA/NBMPR-group, n = 10). Hearts were subjected to 30 min of normothermic global ischaemia and 60 min of reperfusion while on bypass. Adenine nucleotides, nucleosides, oxypurines and NAD+ were determined in extracts of transmural myocardial biopsies using HPLC. TTC staining revealed the absence of necrosis in this model.Drug administration did not affect myocardial ATP metabolism and cardiac function in the normal myocardium. Ischemia caused about 50% ATP depletion and accumulation of nucleosides. The ratio between adenosine/inosine at the end of ischemia was 1:10, 1:1, 1:1 and 10:1 in the control, EHNA-, NBMPR- and EHNA/NBMPR-group, respectively. Upon reperfusion, both nucleosides washed out from the myocardium in the control and EHNA-group while retained in the myocardium in the NBMPR and EHNA/NBMPR groups. Ventricular dysfunction 'stunning' persisted in the control group (52%) and in the EHNA-treated group (32%) after 30 min of reperfusion. Significant improvement of function was observed in the EHNA group only after 60 min of reperfusion. LV function recovered in the NBMPR- and EHNA/NBMPR-treated groups during reperfusion. ATP recovery occurred only when animals were pretreated with the combination of EHNA/NBMPR and remained depressed in the control group and EHNA and NBMPR-treated groups. At post mortem, TTC staining revealed the absence of myocardial necrosis.Superior myocardial protection was observed with inhibition of nucleoside transport by NBMPR alone or in combination with inhibition of adenosine deaminase by EHNA. Selective blockade of nucleoside transport by NBMPR is more cardioprotective than inhibition of adenosine deaminase alone in attenuating myocardial stunning. It is not known why EHNA partially inhibit adenosine deaminase, in vivo.  相似文献   

2.
Previously, we have demonstrated the role of nucleoside transport and purine release in post-ischemic reperfusion injury (myocardial stunning) in several canine models of ischemia. Since rabbits are deficient of xanthine oxidase, it is not known whether selective blockade of purine release is beneficial in a rabbit model of coronary artery occlusion and reperfusion (stunning). Therefore, we determined the hemodynamic and metabolic correlates in response to myocardial stunning in the presence or absence of selective nucleoside transport blocker (p-nitrobenzylthioinosine, NBMPR) and adenosine deaminase inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine, EHNA).Sixty adult anaesthetized rabbits were surgically prepared for hemodynamic measurements. After stabilization period, the left anterior descending coronary artery was occluded for 15 min and reperfused for 30 min. Transmural myocardial biopsies were obtained from the ischemic LAD area and from the non-ischemic posterior (circumflex, CFX) segment of the myocardium.Rabbits (n = 60) were randomly assigned to either the control or the EHNA/NBMPR-treated group (n = 30 each). Each group was further divided to either functional or metabolic groups (n = 15 each subgroup). Each animal received intravenously 30 ml of either a vehicle solution or 100 M EHNA and 25 M NBMPR 10 min before ischemia.Although administration of EHNA/NBMPR did not affect the heart rate, it did cause mild hypotension (about 20-30%). Fifteen minutes of LAD occlusion resulted in significant ATP depletion and concomitant accumulation of nucleosides in both groups (p < 0.05 vs. baseline and non-ischemic CFX segment). AMP was higher in the LAD compared to the CFX segment. Significant accumulation of adenosine was observed in the treated group compared to the control group.It is concluded that EHNA/NBMPR induced site specific entrapment of adenosine of nucleoside transport in the rabbit heart, in vivo.  相似文献   

3.
The degree of myocardial oxygen delivery (Do2) that is necessary to reestablish functional contractile activity after short-term global ischemia in heart is not known. To determine the relationship between Do2 and recovery of contractile and metabolic functions, we used tissue NADH fluorometric changes to characterize adequacy of reperfusion flow. Isolated perfused rat hearts were subjected to global ischemia and were reperfused at variable flow rates that ranged from 1 to 100% of baseline flow. Myocardial function and tissue NADH changes were continuously measured. NADH fluorescence rapidly increased and plateaued during ischemia. A strong inverse logarithmic correlation between NADH fluorescence and reperfusion Do2 was demonstrated (r = -0.952). Left ventricular function (rate-pressure product) was inversely related to NADH fluorescence at reperfusion flows from 25 to 100% of baseline (r = -0.922) but not at lower reperfusion flow levels. An apparent reperfusion threshold of 25% of baseline Do2 was necessary to resume contractile function. At very low reperfusion flows (1% of baseline), another threshold flow was identified at which NADH levels increased beyond that observed during global ischemia (3.4 +/- 3.0%, means +/- SE, n = 9), which suggests further reduction of the cellular redox state. This NADH increase at 1% of baseline reperfusion flow was blocked by removing glucose from the perfusate. NADH fluorescence is a sensitive indicator of myocardial cellular oxygen utilization over a wide range of reperfusion Do2 values. Although oxygen is utilized at very low flow rates, as indicated by changes in NADH, a critical threshold of approximately 25% of baseline Do2 is necessary to restore contractile function after short-term global ischemia.  相似文献   

4.
《Free radical research》2013,47(3-6):169-180
Numerous studies have indirectly, suggested that oxygen-derived free radicals play an important path-ogenetic role in the prolonged depression of contractile function observed in myocardium reperfused after reversible ischemia (myocardial “stunning”). In order to provide direct evidence for the oxy-radical hypothesis of stunning, we administered the spin trap, α-phenyl N-tert-butyl nitrone (PBN), to open-chest dogs undergoing a 15-min coronary artery occlusion followed by reperfusion. Plasma of local coronary venous blood was analyzed by electron paramagnetic resonance (EPR) spectroscopy. EPR signals characteristic of radical adducts of PBN appeared during ischemia and increased dramatically in the first few minutes after reperfusion. After this initial burst, the production of adducts abated but did not cease, persisting up to 3 h after reflow. The production of PBN adducts after reperfusion was inversely related to collateral flow during ischemia. PBN itself enhanced recovery of contractile function. indicating that the radicals trapped may play a pathogenetic role in myocardial stunning. Superoxide dismutase plus catalase attenuated PBN adduct production and, at the same time, improved recovery of contractile function. Antioxidant therapy given 1 min before reperfusion suppressed PBN adduct production and improved contractile recovery; however, the same therapy given 1 min after reperfusion did not suppress early radical production and did not attenuate contractile dysfunction. After i.v. administration, the elimination half-life of PBN was estimated to be approximately 4–5 h. The results demonstrate that 1) free radicals are produced in the stunned myocardium in intact animals; 2) inhibition of free radical production results in improved contractile recovery; and 3) the free radicals important in causing dysfunction are produced in the first few minutes of reperfusion. Taken together, these studies provide cogent evidence supporting the oxy-radical hypothesis of stunning in open-chest dogs. It is now critical to determine whether these results can be reproduced in conscious animal preparations.  相似文献   

5.
The significance of PDE2 on the atrial inotropy was studied in eu- and hyperthyroidism. The contractile force was measured and negative inotropic capacity of N6-cyclopentyladenosine (CPA) was determined on left atria isolated from 8-day thyroxine- or solvent-treated guinea pigs, in the presence or absence of EHNA (adenosine deaminase and PDE2 inhibitor) or NBTI (nucleoside transporter inhibitor). EHNA was administered to inhibit PDE2, while NBTI was used to model the accumulation of endogenous adenosine. The reduction of the contractile force caused by EHNA was smaller in the thyroxine-treated atria than in the solvent-treated samples. Contrary, NBTI induced a decrease in the contractile force without significant difference between the two groups. In addition, EHNA enhanced the efficiency of CPA in thyroxine-treated atria and did not affect it in solvent-treated samples, while the response to CPA was decreased by NBTI in all atria, especially in hyperthyroidism. On the basis of greater retention of the contractile force and sustained/enhanced responsiveness to CPA in the presence of EHNA we conclude that PDE2's inhibition has a significant positive inotropic effect in guinea pig atria and this effect is proven to be augmented in hyperthyroidism.  相似文献   

6.
The effect of SEA0400, a novel Na+-Ca2+ exchanger inhibitor, on mechanical and electrophysiological parameters of coronary-perfused guinea-pig right ventricular tissue preparation was examined during no-flow ischemia and reperfusion. Contractile force and action potential duration were decreased during no-flow ischemia, while the resting tension was increased. Upon reperfusion, transient arrhythmias were observed and contractile force returned to less than 50% of preischemic values. SEA0400 (1 microM) had no effect on the decline in contractile force during the no-flow ischemia, but abolished the rise in resting tension. SEA0400 significantly improved the recovery of contractile force after reperfusion to about 80% of the preischemic value. SEA0400 had no effect on the action potential under normal conditions and during ischemia, but significantly improved the recovery of action potential duration after reperfusion. Enhancement of the recovery of contractile force during reperfusion by SEA0400 was also observed when the drug was applied only before and during the ischemic period and when the drug was applied only during reperfusion. The present results indicate that inhibition of Na+-Ca2+ exchanger either during ischemia or during reperfusion exerts cardioprotective effects and enhances the recovery of myocardial contractile function.  相似文献   

7.
Endothelin (ET) receptor antagonism protects from ischemia-reperfusion injury. We hypothesized that the cardioprotective effect is related to nitric oxide (NO) bioavailability. Buffer-perfused rat and mouse hearts were subjected to ischemia and reperfusion. At the onset of ischemia, the rat hearts received vehicle, the dual endothelin type A/type B (ETA/ETB) receptor antagonist bosentan (10 microM), the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA; 100 microM), the combination of bosentan and L-NMMA or the combination of bosentan, L-NMMA, and the NO substrate L-arginine (1 mM). Hearts from wild-type and endothelial NO synthase (eNOS)-deficient mice received either vehicle or bosentan. Myocardial performance, endothelial function, NO outflow, and eNOS expression were monitored. Bosentan significantly improved myocardial function during reperfusion in rats and in wild-type mice, but not in eNOS-deficient mice. The functional protection afforded by bosentan was inhibited by L-NMMA, whereas it was restored by L-arginine. Myocardial expression of eNOS (immunoblotting) increased significantly in bosentan-treated rat hearts compared with vehicle hearts. Recovery of NO outflow during reperfusion was enhanced in the bosentan-treated rat heart. The endothelium-dependent vasodilator adenosine diphosphate increased coronary flow by 18 +/- 9% at the end of reperfusion in the bosentan group, whereas it reduced coronary flow by 7 +/- 5% in the vehicle group (P < 0.001). The response to the endothelium-independent dilator sodium nitroprusside was not different between the two groups. In conclusion, the dual ETA/ETB receptor antagonist bosentan preserved endothelial and cardiac contractile function during ischemia and reperfusion via a mechanism dependent on endothelial NO production.  相似文献   

8.
The uptake kinetics of nitrobenzyl thioinosine (NBTI), a nucleoside transport inhibitor, was studied in the isolated Langendorf-perfused guinea pig and rat hearts. In rats the rate constant of NBTI uptake was higher and the extent of NBTI accumulation was less than in guinea pig hearts. Heart-accumulated NBTI inhibited the total release of adenine nucleotide degradation products (ANDP) during reperfusion 25 min after global ischemia. The effect was more pronounced in guinea-pig hearts-in accordance with observed higher myocardial concentration of NBTI. Unlike other ANDP, the release adenosine by guinea-pig hearts was unchanged and that by rat hearts increased. In spite of significant NBTI-induced decrease of ANDP losses recovery of contractile function during reperfusion was not observed to improve.  相似文献   

9.
We have studied some hemodynamic parameters as heart rate (HR) developed pressure (DP) and maximal positive values of the first derivative of pressure (+dP/dt max) in isolated heart from control or resveratrol treated rats. In acute ex vivo experiments, resveratrol (1-100 microM) infusion in Langendorff perfused hearts did not affect contractile function in either normoxic conditions or after ischemia/reperfusion. However when semi-chronically administered by IP injection during 7 days, resveratrol which had no effect on pre-ischemic heart greatly improved post-ischemic indexes of myocardial function. Resveratrol effect is dose-dependent and seemed optimal at a plasma level of 18.5 microM. This concentration is very close to that previously shown to be optimal and non-toxic by others. These beneficial effects of resveratrol are only partly explained by its antioxidant properties as suggested by the lack of any dose-response effect on tissue malondialdehyde (MDA) levels. They are also clearly not mediated by nitric oxide (NO) elevation. When acutely infused resveratrol had no beneficial effect and therefore could not be proposed in acute scenarios of ischemia/reperfusion or stroke. However resveratrol appeared as an efficient and promising molecule in the prevention of heart dysfunction.  相似文献   

10.
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function.  相似文献   

11.
The relative roles of mitochondrial (mito) ATP-sensitive K(+) (mitoK(ATP)) channels, protein kinase C (PKC), and adenosine kinase (AK) in adenosine-mediated protection were assessed in Langendorff-perfused mouse hearts subjected to 20-min ischemia and 45-min reperfusion. Control hearts recovered 72 +/- 3 mmHg of ventricular pressure (50% preischemia) and released 23 +/- 2 IU/g lactate dehydrogenase (LDH). Adenosine (50 microM) during ischemia-reperfusion improved recovery (149 +/- 8 mmHg) and reduced LDH efflux (5 +/- 1 IU/g). Treatment during ischemia alone was less effective. Treatment with 50 microM diazoxide (mitoK(ATP) opener) during ischemia and reperfusion enhanced recovery and was equally effective during ischemia alone. A(3) agonism [100 nM 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide], A(1) agonism (N(6)-cyclohexyladenosine), and AK inhibition (10 microM iodotubercidin) all reduced necrosis to the same extent as adenosine, but less effectively reduced contractile dysfunction. These responses were abolished by 100 microM 5-hydroxydecanoate (5-HD, mitoK(ATP) channel blocker) or 3 microM chelerythrine (PKC inhibitor). However, the protective effects of adenosine during ischemia-reperfusion were resistant to 5-HD and chelerythrine and only abolished when inhibitors were coinfused with iodotubercidin. Data indicate adenosine-mediated protection via A(1)/A(3) adenosine receptors is mitoK(ATP) channel and PKC dependent, with evidence for a downstream location of PKC. Adenosine provides additional and substantial protection via phosphorylation to 5'-AMP, primarily during reperfusion.  相似文献   

12.
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.  相似文献   

13.
p38 MAP kinase activation is known to be deleterious not only to mitochondria but also to contractile function. Therefore, p38 MAP kinase inhibition therapy represents a promising approach in preventing reperfusion injury in the heart. However, reversal of p38 MAP kinase-mediated contractile dysfunction may disrupt the fragile sarcolemma of ischemic-reperfused myocytes. We, therefore, hypothesized that the beneficial effect of p38 MAP kinase inhibition during reperfusion can be enhanced when contractility is simultaneously blocked. Isolated and perfused rat hearts were paced at 330 rpm and subjected to 20 min of ischemia followed by reperfusion. p38 MAP kinase was activated after ischemia and early during reperfusion (<30 min). Treatment with the p38 MAP kinase inhibitor SB-203580 (10 microM) for 30 min during reperfusion, but not the c-Jun NH(2)-terminal kinase inhibitor SP-600125 (10 microM), improved contractility but increased creatine kinase release and infarct size. Cotreatment with SB-203580 and the contractile blocker 2,3-butanedione monoxime (BDM, 20 mM) or the ultra-short-acting beta-blocker esmorol (0.15 mM) for the first 30 min during reperfusion significantly reduced creatine kinase release and infarct size. In vitro mitochondrial ATP generation and myocardial ATP content were significantly increased in the heart cotreated with SB-203580 and BDM during reperfusion. Dystrophin was translocated from the sarcolemma during ischemia and reperfusion. SB-203580 increased accumulation of Evans blue dye in myocytes depleted of sarcolemmal dystrophin during reperfusion, whereas cotreatment with BDM facilitated restoration of sarcolemmal dystrophin and mitigated sarcolemmal damage after withdrawal of BDM. These results suggest that treatment with SB-203580 during reperfusion aggravates myocyte necrosis but concomitant blockade of contractile force unmasks cardioprotective effects of SB-203580.  相似文献   

14.
The effects of an adenosine deaminase inhibitor (deoxycoformycin, 500 μg/kg) and of an inhibitor of nucleoside transport (propentofylline, 10 mg/kg) on adenosine and adenine nucleotide levels in the ischemic rat brain were investigated. The brains of the rats were microwaved before, at the end of a 20 min period of cerebral ischemia (4 vessel occlusion+hypotension), or after 5, 10, 45, and 90 min of reperfusion. Deoxycoformycin increased brain adenosine levels during both ischemia and the initial phases of reperfusion. AMP levels were elevated during ischemia and after 5 min of reperfusion. ATP levels were elevated above those in the non-treated animals after 10 and 45 min of reperfusion. ADP levels were elevated above the non-drug controls at 90 min. These increases in ATP, ADP and AMP resulted in significant increases in total adenylates during ischemia, and after 10 min and 90 min of reperfusion. Propentofylline administration resulted in enhanced AMP levels during ischemia but did not alter adenosine or adenine nucleotide levels during reperfusion in comparison with non-treated controls.  相似文献   

15.
In the normal heart, there is loss of citric acid cycle (CAC) intermediates that is matched by the entry of intermediates from outside the cycle, a process termed anaplerosis. Previous in vitro studies suggest that supplementation with anaplerotic substrates improves cardiac function during myocardial ischemia and/or reperfusion. The present investigation assessed whether treatment with the anaplerotic medium-chain fatty acid heptanoate improves contractile function during ischemia and reperfusion. The left anterior descending coronary artery of anesthetized pigs was subjected to 60 min of 60% flow reduction and 30 min of reperfusion. Three treatment groups were studied: saline control, heptanoate (0.4 mM), or hexanoate as a negative control (0.4 mM). Treatment was initiated after 30 min of ischemia and continued through reperfusion. Myocardial CAC intermediate content was not affected by ischemia-reperfusion; however, treatment with heptanoate resulted in a more than twofold increase in fumarate and malate, with no change in citrate and succinate, while treatment with hexanoate did not increase fumarate or malate but increased succinate by 1.8-fold. There were no differences among groups in lactate exchange, glucose oxidation, oxygen consumption, and contractile power. In conclusion, despite a significant increase in the content of carbon-4 CAC intermediates, treatment with heptanoate did not result in improved mechanical function of the heart in this model of reversible ischemia-reperfusion. This suggests that reduced anaplerosis and CAC dysfunction do not play a major role in contractile and metabolic derangements observed with a 60% decrease in coronary flow followed by reperfusion.  相似文献   

16.
During voluntary contractions, the skeletal muscle of healthy older adults often fatigues less than that of young adults, a result that has been explained by relatively greater reliance on muscle oxidative metabolism in the elderly. Our aim was to investigate whether this age-related fatigue resistance was eliminated when oxidative metabolism was minimized via ischemia induced by cuff (220 mmHg). We hypothesized that 1) older men (n = 12) would fatigue less than young men (n = 12) during free-flow (FF) contractions; 2) both groups would fatigue similarly during ischemia; and 3) reperfusion would reestablish the fatigue resistance of the old. Subjects performed 6 min of intermittent, maximal voluntary isometric contractions of the ankle dorsiflexors under FF and ischemia-reperfusion (IR) conditions. Ischemia was maintained for the first 3 min of contractions, followed by rapid cuff deflation and reperfusion for 3 additional minutes of contractions. Central activation, peripheral activation, and muscle contractile properties were measured at 3 and 6 min of contractions. Older men fatigued less than young men during FF (P 相似文献   

17.
A brief, transient period of coronary artery occlusion (less than 20 minutes in duration) followed by reperfusion does not result in irreversible myocyte injury or death, yet the regional contractile function and high energy phosphate content of the previously ischemic tissue remains depressed or 'stunned' for hours to days following reperfusion. It has been suggested that this prolonged postischemic dysfunction of viable, previously ischemic myocardium may be a consequence of oxygen-derived free radicals generated during occlusion or at the time of reperfusion. Recent evidence demonstrates that free radical scavenging agents such as superoxide dismutase (SOD) + catalase, N-2-mercaptopropionylglycine, and allopurinol, administered prior to coronary artery occlusion, significantly enhance recovery of regional contractile function of the stunned, previously ischemic tissue. This improved contractile function was not, however, accompanied by improvements in high energy phosphate metabolism: infusion of SOD + catalase did not preserve ATP stores in the previously ischemic tissue. These data support the hypothesis that oxygen-derived free radicals contribute, at least in part, to the phenomenon of the stunned myocardium. The source or mechanisms of free radical production in the setting of brief, transient ischemia, however, remains to be elucidated.  相似文献   

18.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

19.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

20.
The changes of the contractile function of the heart and cAMP content in myocardium depending on the temperature conditions of reperfusion (28 degrees C, 32 degrees C, 37 degrees C) after 90 minutes of hypothermal ischemia have been investigated on isolated hearts of rats. The comparative analysis of the investigation results has shown that, after cooling a cardial muscle to 8-12 degrees C, reperfusion with initial temperature of perfusate of 32 degrees C promotes fast restoration of independent cardiac activity, does not cause formation of reperfusion contracture, normalizes processes of synthesis and cAMP utilization in cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号