首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the aerobic metabolism of trimethylamine in Pseudomonas putida A ATCC 12633 grown on tetradecyltrimethylammonium bromide or trimethylamine. In both conditions, the trimethylamine was used as a nitrogen source and also accumulated in the cell, slowing the bacterial growth. Decreased bacterial growth was counteracted by the addition of AlCl3. Cell-free extracts prepared from cells grown aerobically on tetradecyltrimethylammonium bromide exhibited trimethylamine monooxygenase activity that produced trimethylamine N-oxide and trimethylamine N-oxide demethylase activity that produced dimethylamine. Cell-free extracts from cells grown on trimethylamine exhibited trimethylamine dehydrogenase activity that produced dimethylamine, which was oxidized to methanal and methylamine by dimethylamine dehydrogenase. These results show that this bacterial strain uses two enzymes to initiate the oxidation of trimethylamine in aerobic conditions. The apparent Km for trimethylamine was 0.7 mM for trimethylamine monooxygenase and 4.0 mM for trimethylamine dehydrogenase, but both enzymes maintain similar catalytic efficiency (0.5 and 0.4, respectively). Trimethylamine dehydrogenase was inhibited by trimethylamine from 1 mM. Therefore, the accumulation of trimethylamine inside Pseudomonas putida A ATCC 12633 grown on tetradecyltrimethylammonium bromide or trimethylamine may be due to the low catalytic efficiency of trimethylamine monooxygenase and trimethylamine dehydrogenase.  相似文献   

2.
The aerobic and anaerobic degradation of trimethylamine by a newly isolated denitrifying bacterium from an enrichment culture with trimethylamine inoculated with activated sludge was studied. Based on 16S rDNA analysis, this strain was identified as a Paracoccus sp. The isolate, strain T231, aerobically degraded trimethylamine, dimethylamine and methylamine and released a stoichiometric amount of ammonium ion into the culture fluid as a metabolic product, indicating that these methylated amines were completely degraded to formaldehyde and ammonia. The strain degraded trimethylamine also under denitrifying conditions and consumed a stoichiometric amount of nitrate, demonstrating that complete degradation of trimethylamine was coupled with nitrate reduction. Cell-free extract prepared from cells grown aerobically on trimethylamine exhibited activities of trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase, dimethylamine mono-oxygenase, and methylamine mono-oxygenase. Cell-free extract from cells grown anaerobically on trimethylamine and nitrate exhibited activities of trimethylamine dehydrogenase and dimethylamine dehydrogenase. These results indicate that strain T231 had two different pathways for aerobic and anaerobic degradation of trimethylamine. This is a new feature for trimethylamine metabolism in denitrifying bacteria.  相似文献   

3.
Fujieda N  Satoh A  Tsuse N  Kano K  Ikeda T 《Biochemistry》2004,43(33):10800-10808
Histamine dehydrogenase from Nocardioides simplex is a homodimeric enzyme and catalyzes oxidative deamination of histamine. The gene encoding this enzyme has been sequenced and cloned by polymerase chain reactions and overexpressed in Escherichia coli. The sequence of the complete open reading frame, 2073 bp coding for a protein of 690 amino acids, was determined on both strands. The amino acid sequence of histamine dehydrogenase is closely related to those of trimethylamine dehydrogenase and dimethylamine dehydrogenase containing an unusual covalently bound flavin mononucleotide, 6-S-cysteinyl-flavin mononucleotide, and one 4Fe-4S cluster as redox active cofactors in each subunit of the homodimer. The presence of the identical redox cofactors in histamine dehydrogenase has been confirmed by sequence alignment analysis, mass spectral analysis, UV-vis and EPR spectroscopy, and chemical analysis of iron and acid-labile sulfur. These results suggest that the structure of histamine dehydrogenase in the vicinity of the two redox centers is almost identical to that of trimethylamine dehydrogenase as a whole. The structure modeling study, however, demonstrated that a putative substrate-binding cavity in histamine dehydrogenase is quite distinct from that of trimethylamine dehydrogenase.  相似文献   

4.
Oxidation of C1 compounds by Pseudomonas sp. MS   总被引:6,自引:2,他引:4       下载免费PDF全文
Pseudomonas sp. MS is capable of growth on a number of compounds containing only C1 groups. They include trimethylsulphonium salts, methylamine, dimethylamine and trimethylamine. Although formaldehyde and formate will not support growth they are rapidly oxidized by intact cells. Methanol neither supports growth nor is oxidized. A particulate fraction of the cell oxidizes methylamine to carbon dioxide in the absence of any external electron acceptor. Formaldehyde and formate are more slowly oxidized to carbon dioxide by the particulate fraction, although they do not appear to be free intermediates in the oxidation of methylamine. Soluble NAD-linked formaldehyde dehydrogenase and formate dehydrogenase are also present. The particulate methylamine oxidase is induced by growth on methylamine, dimethylamine and trimethylamine, whereas the soluble formaldehyde dehydrogenase and formate dehydrogenase are induced by trimethylsulphonium nitrate as well as the aforementioned amines.  相似文献   

5.
Trimethylamine metabolism in obligate and facultative methylotrophs   总被引:13,自引:6,他引:7  
1. Twelve bacterial isolates that grow with trimethylamine as sole source of carbon and energy were obtained in pure culture. All the isolates grow on methylamine, dimethylamine and trimethylamine. One isolate, bacterium 4B6, grows only on these methylamines whereas another isolate, bacterium C2A1, also grows on methanol but neither grows on methane; these two organisms are obligate methylotrophs. The other ten isolates grow on a variety of C(i) and other organic compounds and are therefore facultative methylotrophs. 2. Washed suspensions of the obligate methylotrophs bacteria 4B6 and C2A1, and of the facultative methylotrophs bacterium 5B1 and Pseudomonas 3A2, all grown on trimethylamine, oxidize trimethylamine, dimethylamine, formaldehyde and formate; only bacterium 5B1 and Ps. 3A2 oxidize trimethylamine N-oxide; only bacterium 4B6 does not oxidize methylamine. 3. Cell-free extracts of trimethylamine-grown bacteria 4B6 and C2A1 contain a trimethylamine dehydrogenase that requires phenazine methosulphate as primary hydrogen acceptor, and evidence is presented that this enzyme is important for the growth of bacterium 4B6 on trimethylamine. 4. Cell-free extracts of eight facultative methylotrophs, including bacterium 5B1 and Ps. 3A2, do not contain trimethylamine dehydrogenase but contain instead a trimethylamine monooxygenase and trimethylamine N-oxide demethylase. It is concluded that two different pathways for the oxidation of trimethylamine occur amongst the isolates.  相似文献   

6.
The localization of prominent proteins in intact cells of two methylotrophic bacteria, Hyphomicrobium sp. strain X and bacterium W3A1, was investigated by radiochemical labeling with [14C]isethionyl acetimidate. In bacterium W3A1, trimethylamine dehydrogenase was not labeled by the reagent and is, therefore, an intracellular protein, whereas the periplasmic location of the methylamine and methanol dehydrogenases was evidenced by being readily labeled in intact cells. Similarly, an intracellular location of the trimethylamine and dimethylamine dehydrogenases in Hyphomicrobium sp. strain X was indicated, whereas methanol dehydrogenase was periplasmic.  相似文献   

7.
Trimethylamine dehydrogenases from bacterium W3A1 and Hyphomicrobium X and the dimethylamine dehydrogenase from Hyphomicrobium X were found to contain only one kind of subunit. The millimolar absorption coefficient of a single [4Fe-4S] cluster in trimethylamine dehydrogenase from bacterium W3A1 was estimated to be 14.8 mM-1 . cm-1 at 443 nm. From this value a 1:1 stoicheiometry of the prosthetic groups, 6-S-cysteinyl-FMN and the [4Fe-4S] cluster, was established. Millimolar absorption coefficients of the three enzymes were in the range 49.4-58.7 mM-1 . cm-1 at approx. 440 nm. This range of values is consistent with the presence of two [4Fe-4S] clusters and two flavin residues, for which the millimolar absorption coefficient had earlier been found to be 12.3 mM-1 . cm-1 at 437 nm. The N-terminal amino acid was alanine in each of the three enzymes. Sequence analysis of the first 15 residues from the N-terminus of dimethylamine dehydrogenase indicated a single unique sequence. Two identical subunits, each containing covalently bound 6-S-cysteinyl-FMN and a [4Fe-4S] cluster, in each of the enzymes are therefore indicated.  相似文献   

8.
1. The trimethylamine dehydrogenase of bacterium 4B6 was purified to homogeneity as judged by analytical polyacrylamide-gel electrophoresis. The specific activity of the purified enzyme is 30-fold higher than that of crude sonic extracts. 2. The molecular weight of the enzyme is 161000. 3. The kinetic properties of the purified enzyme were studied by using an anaerobic spectrophotometric assay method allowing the determination of trimethylamine dehydrogenase activity at pH8.5, the optimum pH. The apparent K(m) for trimethylamine is 2.0+/-0.3mum and the apparent K(m) for the primary hydrogen acceptor, phenazine methosulphate, is 1.25mm. 4. Of 13 hydrogen acceptors tested, only Brilliant Cresyl Blue and Methylene Blue replace phenazine methosulphate. 5. A number of secondary and tertiary amines with N-methyl and/or N-ethyl groups are oxidized by the purified enzyme; primary amines and quaternary ammonium salts are not oxidized. Of the compounds that are oxidized by the purified enzyme, only trimethylamine and ethyldimethylamine support the growth of bacterium 4B6. 6. Trimethylamine dehydrogenase catalyses the anaerobic oxidative N-demethylation of trimethylamine with the formation of stoicheiometric amounts of dimethylamine and formaldehyde. Ethyldimethylamine is also oxidatively N-demethylated yielding ethylmethylamine and formaldehyde; diethylamine is oxidatively N-de-ethylated. 7. The activity of the purified enzyme is unaffected by chelating agents and carbonyl reagents, but is inhibited by some thiol-binding reagents and by Cu(2+), Co(2+), Ni(2+), Ag(+) and Hg(2+). Trimethylamine dehydrogenase activity is potently inhibited by trimethylsulphonium chloride, by tetramethylammonium chloride and other quaternary ammonium salts, and by monoamine oxidase inhibitors of the substituted hydrazine and the non-hydrazine types. 8. Inhibition by the substituted hydrazines is time-dependent, is prevented by the presence of trimethylamine or trimethylamine analogues and in some cases requires the presence of the hydrogen acceptor phenazine methosulphate. The inhibition was irreversible with the four substituted hydrazines that were tested.  相似文献   

9.
Pseudomonas sp. strain 7-6, isolated from active sludge obtained from a wastewater facility, utilized a quaternary ammonium surfactant, n-dodecyltrimethylammonium chloride (DTAC), as its sole carbon, nitrogen, and energy source. When initially grown in the presence of 10 mM DTAC medium, the isolate was unable to degrade DTAC. The strain was cultivated in gradually increasing concentrations of the surfactant until continuous exposure led to high tolerance and biodegradation of the compound. Based on the identification of five metabolites by gas chromatography-mass spectrometry analysis, two possible pathways for DTAC metabolism were proposed. In pathway 1, DTAC is converted to lauric acid via n-dodecanal with the release of trimethylamine; in pathway 2, DTAC is converted to lauric acid via n-dodecyldimethylamine and then n-dodecanal with the release of dimethylamine. Among the identified metabolites, the strain precultivated on DTAC medium could utilize n-dodecanal and lauric acid as sole carbon sources and trimethylamine and dimethylamine as sole nitrogen sources, but it could not efficiently utilize n-dodecyldimethylamine. These results indicated pathway 1 is the main pathway for the degradation of DTAC.  相似文献   

10.
Abstract Sporopachydermia cereana , an ascosporogenous yeast, grew on dimethylamine, trimethylamine or trimethylamine N -oxide as sole nitrogen sources and produced mono-oxygenases for dimethylamine and trimethylamine that were significantly more stable than the corresponding enzymes found in Candida utilis . No trimethylamine mono-oxygenase activity was found in S. cereana grown on dimethylamine. In cells grown on trimethylamine N -oxide (but not on the other nitrogen sources), evidence for an enzyme metabolizing the N -oxide, possibly an aldolase, but more probably a reductase was obtained. All these activities showed a similar requirement for the presence of FAD or FMN in the extract buffer during isolation to retain activity. Amine mono-oxygenase activities showed a similar sensitivity to inhibitors, including proadifen hydrochloride and carbon monoxide as the corresponding enzymes in C. utilis . The trimethylamine N -oxide-dependent oxidation of NADH was more sensitive to inhibition by EDTA, N -ethylmaleimide and β-phenylethylamine than the mono-oxygenases, and less sensitive to KCN, and activity was significantly higher with NADPH than was observed with the 2 mono-oxygenases.  相似文献   

11.
Dimethylamine was formed in municipal sewage that was amended with creatinine, and trimethylamine was formed from choline or phosphatidylcholine. The maximum level of product that accumulated was equivalent to 0.13, 0.096, and 6.7% by weight, respectively, of the added chemicals. No dimethylamine or trimethylamine was detected in sewage amended with betaine, and no dimethylamine was found in sewage that was amended with methylamine and methionine.  相似文献   

12.
1. A mono-oxygenase, which oxidizes trimethylamine and other tertiary amines bearing methyl or ethyl groups, was partially purified sixfold from Pseudomonas aminovorans grown on trimethylamine as sole carbon source. 2. The preferred electron donor was NADPH. The enzyme had a pH optimum of 8.0-9.4 for trimethylamine oxidation, and 8.8-9.2 for dimethylamine oxidation. 3. The oxidation product of trimethylamine was shown to be trimethylamine N-oxide. Other tertiary amines were probably also converted into N-oxides. 4. The enzyme also oxidized secondary amines. 5. The oxidation of trimethylamine was only slightly inhibited by CO and not at all by KCN or proadifen hydrochloride (SKF 525-A), but was inhibited by trimethylsulphonium chloride, tetramethylammonium chloride, 2,4-dichloro-6-phenylphenoxyethylamine (Lilly 53325) and its NN-diethyl derivative (Lilly 18947). 6. The oxidation of dimethylamine showed a similar response to inhibitors and a parallel loss in activity on heating at 35 degrees C. 7. The activities of the trimethylamine mono-oxygenase, trimethylamine N-oxide demethylase and the secondary-amine mono-oxygenase increased severalfold during adaptation of succinate-grown bacteria to growth on trimethylamine, and the trimethylamine mono-oxygenase was the first enzyme to show an increase in activity. It is concluded that all three enzymes are involved in growth on trimethylamine by this organism.  相似文献   

13.
The metabolism of trimethylamine (TMA) and dimethylamine (DMA) in Arthrobacter P1 involved the enzymes TMA monooxygenase and trimethylamine-N-oxide (TMA-NO) demethylase, and DMA monooxygenase, respectively. The methylamine and formaldehyde produced were further metabolized via a primary amine oxidase and the ribulose monophosphate (RuMP) cycle. The amine oxidase showed activity with various aliphatic primary amines and benzylamine. The organism was able to use methylamine, ethylamine and propylamine as carbon-and nitrogen sources for growth. Butylamine and benzylamine only functioned as nitrogen sources. Growth on glucose with ethylamine, propylamine, butylamine and benzylamine resulted in accumulation of the respective aldehydes. In case of ethylamine and propylamine this was due to repression by glucose of the synthesis of the aldehyde dehydrogenase(s) required for their further metabolism. Growth on glucose/methylamine did not result in repression of the RuMP cycle enzyme hexulose-6-phosphate synthase (HPS). High levels of this enzyme were present in the cells and as a result formaldehyde did not accumulate. Ammonia assimilation in Arthrobacter P1 involved NADP-dependent glutamate dehydrogenase (GDH), NAD-dependent alanine dehydrogenase (ADH) and glutamine synthetase (GS) as key enzymes. In batch cultures both GDH and GS displayed highest levels during growth on acetate with methylamine as the nitrogen source. A further increase in the levels of GS, but not GDH, was observed under ammonia-limited growth conditions in continuous cultures with acetate or glucose as carbon sources.Abbreviations HPS hexulose-6-phosphate synthase - RuMP ribulose monophosphate - DMA dimethylamine - TMA trimethylamine - TMA-NO trimethylamine-N-oxide - ICL isocitrate lyase - GS glutamine synthetase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOGAT glutamate synthase  相似文献   

14.
E.p.r. spectroscopy of the trimethylamine and dimethylamine dehydrogenases of Hyphomicrobium X indicates that the substrate-reduced forms of these enzymes exist in the triplet state, which arise through interaction of a reduced [4Fe-4S] cluster and flavosemiquinone, with e.p.r. signals which differ in detail from those of the trimethylamine dehydrogenase of bacterium W3A1. Under certain conditions the intramolecular electron transfer between the flavoquinol form of 6-S-cysteinyl-FMN and the [4Fe-4S] cluster in all three dehydrogenases was much slower than the preceding reduction of the flavin to the flavoquinol form. Trimethylamine dehydrogenases from both organisms show a time-dependent broadening of the e.p.r. signals centred around g = 2 after mixing with trimethylamine. The broadening of the e.p.r. signals could be correlated with an unexpected dependence of the rate of formation of the triplet state on substrate concentration. A model which accounts in a qualitative manner for the substrate dependence of the formation of the triplet state in the trimethylamine dehydrogenase of Hyphomicrobium X is proposed. The binding of the substrate to the reduced form of the enzyme seems to result in a conformational change of the enzyme to a form in which the rate of intramolecular electron transfer is decreased. This finding may be correlated with the observation of hyperbolic substrate inhibition for both trimethylamine dehydrogenases. The results indicate the transfer of an electron to the [4Fe-4S] cluster to be an obligatory step in catalysis and suggest that the transfer of electrons from these enzymes to electron acceptors is mediated solely through the [4Fe-4S] cluster.  相似文献   

15.
The reaction of trimethylamine dehydrogenase with trimethylamine   总被引:1,自引:0,他引:1  
The reductive half-reaction of trimethylamine dehydrogenase with its physiological substrate trimethylamine has been examined by stopped-flow spectroscopy over the pH range 6.0-11.0, with attention focusing on the fastest of the three kinetic phases of the reaction, the flavin reduction/substrate oxidation process. As in previous work with the slow substrate diethylmethylamine, the reaction is found to consist of three well resolved kinetic phases. The observed rate constant for the fast phase exhibits hyperbolic dependence on the substrate concentration with an extrapolated limiting rate constant (klim) greater than 1000 s-1 at pH above 8.5, 10 degrees C. The kinetic parameter klim/Kd for the fast phase exhibits a bell-shaped pH dependence, with two pKa values of 9.3 +/- 0.1 and 10. 0 +/- 0.1 attributed to a basic residue in the enzyme active site and the ionization of the free substrate, respectively. The sigmoidal pH profile for klim gives a single pKa value of 7.1 +/- 0. 2. The observed rate constants for both the intermediate and slow phases are found to decrease as the substrate concentration is increased. The steady-state kinetic behavior of trimethylamine dehydrogenase with trimethylamine has also been examined, and is found to be adequately described without invoking a second, inhibitory substrate-binding site. The present results demonstrate that: (a) substrate must be protonated in order to bind to the enzyme; (b) an ionization group on the enzyme is involved in substrate binding; (c) an active site general base is involved, but not strictly required, in the oxidation of substrate; (d) the fast phase of the reaction with native enzyme is considerably faster than observed with enzyme isolated from Methylophilus methylotrophus that has been grown up on dimethylamine; and (e) a discrete inhibitory substrate-binding site is not required to account for excess substrate inhibition, the kinetic behavior of trimethylamine dehydrogenase can be readily explained in the context of the known properties of the enzyme.  相似文献   

16.
The bromoethylesters of phosphatidic acids and their analogues are general intermediates in the synthesis of phospholipids. A direct amination with different amines such as ammonia, methylamine, dimethylamine and trimethylamine results in the corresponding phosphatidylethanolamines and -cholines. In addition to the well elaborated reactions of bromoethylesters with trimethylamine and dimethylamine, the synthesis of phosphatidylethanolamines and -(N-methyl)-ethanolamines by amination with ammonia and methylamine is now possible in high yields (> 90%) without the need of the usual protecting groups.  相似文献   

17.
The gene encoding histamine dehydrogenase in Rhizobium sp. 4--9 has been cloned and overexpressed in Escherichia coli. The coding region of the gene was 2,079 bp and encoded a protein of 693 amino acids with a calculated molecular mass of 76,732 Da. This histamine dehydrogenase was related to histamine dehydrogenase from Nocardioides simplex (54.5% identical), trimethylamine dehydrogenase from Methylophilus methylotrophus (39.3% identical) and dimethylamine dehydrogenase from Hyphomicrobium X (38.1% identical), which have a covalent 6-S-cysteinyl flavin mononucleotide and a [4Fe--4S] cluster as redox cofactors. Sequence alignment and a UV-visible absorption spectrum supported the presence of these cofactors in this histamine dehydrogenase. The investigation of the enzymatic properties suggested that this enzyme exhibited the most excellent substrate specificity toward histamine among all amine oxidases or dehydrogenases found to date. The recombinant enzyme was able to be used for the colorimetric determination of histamine, which gave a linear calibration curve and identical data with conventional methods.  相似文献   

18.
Adenosine 5'-triphosphate (ATP) plays an essential role in all forms of life. Molecular recognition of ATP in proteins is a subject of great importance for understanding enzymatic mechanism and for drug design. We have carried out a large-scale data mining of the Protein Data Bank (PDB) to analyze molecular determinants for recognition of the adenine moiety of ATP by proteins. Non-bonded intermolecular interactions (hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) between adenine base and surrounding residues in its binding pockets are systematically analyzed for 68 non-redundant, high-resolution crystal structures of adenylate-binding proteins. In addition to confirming the importance of the widely known hydrogen bonding, we found out that cation-pi interactions between adenine base and positively charged residues (Lys and Arg) and pi-pi stacking interactions between adenine base and surrounding aromatic residues (Phe, Tyr, Trp) are also crucial for adenine binding in proteins. On average, there exist 2.7 hydrogen bonding interactions, 1.0 pi-pi stacking interactions, and 0.8 cation-pi interactions in each adenylate-binding protein complex. Furthermore, a high-level quantum chemical analysis was performed to analyze contributions of each of the three forms of intermolecular interactions (i.e. hydrogen bonding, pi-pi stacking interactions, and cation-pi interactions) to the overall binding force of the adenine moiety of ATP in proteins. Intermolecular interaction energies for representative configurations of intermolecular complexes were analyzed using the supermolecular approach at the MP2/6-311 + G* level, which resulted in substantial interaction strengths for all the three forms of intermolecular interactions. This work represents a timely undertaking at a historical moment when a large number of X-ray crystallographic structures of proteins with bound ATP ligands have become available, and when high-level quantum chemical analysis of intermolecular interactions of large biomolecular systems becomes computationally feasible. The establishment of the molecular basis for recognition of the adenine moiety of ATP in proteins will directly impact molecular design of ATP-binding site targeted enzyme inhibitors such as kinase inhibitors.  相似文献   

19.
The trimethylamine dehydrogenase of bacterium W3A1 is reduced with the formation of a triplet state in which two electrons, derived from the substrate, are distributed between the [4Fe-4S] cluster and 6-S-cysteinyl-FMN semiquinone. In titration experiments at pH 8.5 about 1.0 mol of dimethylamine or 0.5 mol of trimethylamine per mol of the enzyme is required to titrate the enzyme to an endpoint. At pH values less than 8.0, however, an excess of trimethylamine is required to obtain maximal yield of the g = 4 e.p.r. signal, characteristic of the triplet state, or maximal absorbance at 365 nm which indicates formation of the flavin semiquinone. The binding of 0.86 mol of trimethylamine per mol of the enzyme could be detected by a gel chromatographic method. When the enzyme is titrated with dithionite in the presence of tetramethylammonium chloride, an endpoint is reached after the uptake of two electrons which give rise to the triplet state, whereas three electrons are consumed in the absence of tetramethylammonium chloride to reduce the enzyme completely. The enzyme is inhibited noncompetitively by tetramethylammonium chloride and the slopes of double reciprocal plots are a concave upwards function of inhibitor concentration. The data indicate the presence of a binding site for the substrate and other amines on the reduced enzyme which enhances the proportion of enzyme in the triplet state.  相似文献   

20.
A voltammetric enzyme electrode was developed based on nicotinamide-independent trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), which catalyses the oxidation of trimethylamine (TMA) to dimethylamine and formaldehyde. A quaternized osmium hydrogel polymer, poly(vinylimidazole-[Os(4,4′-dimethyl-2,2′-bipyridine)2Cl]+/2+) with ethylamine (PVI-Os-EA), was prepared as a potential redox mediator in an electrochemical biosensor. TMA was detected using TMADH that was co-immobilized with an osmium hydrogel polymer on electrodeposited gold nanoparticles (Au-NPs) on screen-printed carbon electrodes (SPCEs). The Au-NPs deposited onto SPCEs provided about a three times higher electrochemical response compared to that of a planar gold electrode. As TMA was catalyzed by wired TMADH, the electrical signal was monitored at 0.3 V versus Ag/AgCl by cyclic voltammetry and chronoamperometry. The anode currents increased linearly in proportion to the TMA concentration over the 0 ∼ 2.5 mM range with a detection limit of 1 μM (R = 0.9972).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号