首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glial cells are thought to protect neurons from various neurological insults. When there is injury to retina, Müller cells, which are the predominant glial element in the retina, undergo significant morphological, cellular and molecular changes. Some of these changes reflect Müller cell involvement in protecting the retina from further damage. Müller cells express growth factors, neurotransmitter transporters and antioxidant agents that could have an important role in preventing excitotoxic damage to retinal neurons. Moreover, Müller cells contact to endothelial cells to facilitate the neovascularization process during hypoxic conditions. Finally, recent studies have pointed to a role of Müller cells in retina regeneration after damage, dedifferentiating to progenitor cells and then giving rise to different neuronal cell types. In this article we will review the role of Müller glia in neuroprotection and regeneration after damage in the retina.  相似文献   

2.
Notch-Delta signaling has been implicated in several alternative modes of function in the vertebrate retina. To further investigate these functions, we examined retinas from zebrafish embryos in which bidirectional Notch-Delta signaling was inactivated either by the mind bomb (mib) mutation, which disrupts E3 ubiquitin ligase activity, or by treatment with gamma-secretase inhibitors, which prevent intramembrane proteolysis of Notch and Delta. We found that inactivating Notch-Delta signaling did not prevent differentiation of retinal neurons, but it did disrupt spatial patterning in both the apical-basal and planar dimensions of the retinal epithelium. Retinal neurons differentiated, but their laminar arrangement was disrupted. Photoreceptor differentiation was initiated normally, but its progression was slowed. Although confined to the apical retinal surface as in normal retinas, the planar organization of cone photoreceptors was disrupted: cones of the same spectral subtype were clumped rather than regularly spaced. In contrast to neurons, Müller glia failed to differentiate suggesting an instructive role for Notch-Delta signaling in gliogenesis.  相似文献   

3.
The retina in adult mammals, unlike those in lower vertebrates such as fish and amphibians, is not known to support neurogenesis. However, when injured, the adult mammalian retina displays neurogenic changes, raising the possibility that neurogenic potential may be evolutionarily conserved and could be exploited for regenerative therapy. Here, we show that Müller cells, when retrospectively enriched from the normal retina, like their radial glial counterparts in the central nervous system (CNS), display cardinal features of neural stem cells (NSCs), i.e., they self-renew and generate all three basic cell types of the CNS. In addition, they possess the potential to generate retinal neurons, both in vitro and in vivo. We also provide direct evidence, by transplanting prospectively enriched injury-activated Müller cells into normal eye, that Müller cells have neurogenic potential and can generate retinal neurons, confirming a hypothesis, first proposed in lower vertebrates. This potential is likely due to the NSC nature of Müller cells that remains dormant under the constraint of non-neurogenic environment of the adult normal retina. Additionally, we demonstrate that the mechanism of activating the dormant stem cell properties in Müller cells involves Wnt and Notch pathways. Together, these results identify Müller cells as latent NSCs in the mammalian retina and hence, may serve as a potential target for cellular manipulation for treating retinal degeneration.  相似文献   

4.
Müller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Müller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Müller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Müller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Müller glia-derived cells. Together, these results provide evidences that Müller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.  相似文献   

5.
NPY is present in the retina of different species but its role is not elucidated yet. In this work, using different rat retina in vitro models (whole retina, retinal cells in culture, microglial cell cultures, rat Müller cell line and retina endothelial cell line), we demonstrated that NPY staining is present in the retina in different cell types: neurons, macroglial, microglial and endothelial cells. Retinal cells in culture express NPY Y(1), Y(2), Y(4) and Y(5) receptors. Retina endothelial cells express all NPY receptors except NPY Y(5) receptor. Moreover, NPY is released from retinal cells in culture upon depolarization. In this study we showed for the first time that NPY is present in rat retina microglial cells and also in rat Müller cells. These in vitro models may open new perspectives to study the physiology and the potential pathophysiological role of NPY in the retina.  相似文献   

6.
Cells of Müller glia and microglia react to neuronal injury in glaucoma. The change to a reactive phenotype initiates signaling cascades that may serve a neuroprotective role, but may also proceed to promote damaging effects on retinal neurons. Both effects appear to occur most likely in parallel in glaucoma, but the underlying mechanisms and signaling pathways that specifically promote protective versus destructive roles of reactive glial cells are mostly unclear. More research is needed to understand the homeostatic signaling network in which retinal glia cells are embedded to maintain or restore neuronal function after injury.  相似文献   

7.
Müller glia (MG) dedifferentiation into a cycling population of multipotent progenitors is crucial to zebrafish retina regeneration. The mechanisms underlying MG dedifferentiation are unknown. Here we report that heparin-binding epidermal-like growth factor (HB-EGF) is rapidly induced in MG residing at the injury site and that pro-HB-EGF ectodomain shedding is necessary for retina regeneration. Remarkably, HB-EGF stimulates the formation of multipotent MG-derived progenitors in the uninjured retina. We show that HB-EGF mediates its effects via an EGFR/MAPK signal transduction cascade that regulates the expression of regeneration-associated genes, like ascl1a and pax6(b). We also uncover an HB-EGF/Ascl1a/Notch/hb-egf(a)-signaling loop that helps define the zone of injury-responsive MG. Finally, we show that HB-EGF acts upstream of the Wnt/β-catenin-signaling cascade that controls progenitor proliferation. These data provide a link between extracellular signaling and regeneration-associated gene expression in the injured retina and suggest strategies for stimulating retina regeneration in mammals.  相似文献   

8.
We have previously shown that an antibody against neuron-specific enolase (NSE) selectively labels Müller cells (MCs) in the anuran retina (Wilhelm et al. 1992). In the present study the light- and electron-microscopic morphology of MCs and their distribution were described in the retina of the toad, Bufo marinus, using the above antibody. The somata of MCs were located in the proximal part of the inner nuclear layer and were interconnected with each other by their processes. The MCs were uniformly distributed across the retina with an average density of 1500 cells/mm2. Processes of MCs encircled the somata of photoreceptor cells isolating them from each other by glial sheath, except for those of the double cones. Some of the photoreceptor pedicles remained free of glial sheath. Electron-microscopic observations confirmed that MC processes provide an extensive scaffolding across the neural retina. At the outer border of the ganglion cell layer these processes formed a non-continuous sheath. The MC processes traversed through the ganglion cell layer and spread beneath it between the neuronal somata and the underlying optic axons. These processes formed a continuous inner limiting membrane separating the optic fibre layer from the vitreous tissue. Neither astrocytic nor oligodendrocytic elements were found in the optic fibre layer. The significance of the uniform MC distribution and the functional implications of the observed pattern of MC scaffolding are discussed.  相似文献   

9.
10.
Regulation of potassium levels by Müller cells in the vertebrate retina   总被引:2,自引:0,他引:2  
The membrane properties of Müller cells, the principal glial cells of the vertebrate retina, have been characterized in a series of physiological experiments on freshly dissociated cells. In species lacking a retinal circulation (tiger salamander, rabbit, guinea pig), the end-foot of the Müller cell has a much higher K+ conductance than do other cell regions. In species with retinal circulation (mouse, cat, owl monkey) the K+ conductance of the end-foot is greater than the conductance of the proximal process of the cell. In these species, however, the K+ conductance of the soma and distal process is equal to, or greater than, the end-foot conductance. Müller cells also possess four voltage-dependent ion channels, including an inward rectifying K+ channel. These membrane specializations may aid in the regulation of extracellular K+ levels by Müller cells in the retina. High end-foot conductance shunts excess K+ out through the end-foot, where it diffuses into the vitreous humor. In vascularized retinae, excess K+ may also be transferred to the ablumenal wall of capillaries, where it could be transported into the blood.  相似文献   

11.
The Müller cell is the only glial cell type generated from the retinal neuroepithelium. This cell type controls normal retina homeostasis and has been suggested to play a neuroprotective role. Recent evidence suggests that mammalian Müller cells can de-differentiate and return to a progenitor or stem cell stage following injury or disease. In vivo exploration of the molecular mechanisms of Müller cell differentiation and proliferation will add essential information to manipulate Müller cell functions. Signal transduction pathways that regulate Müller cell responses and activity are a critical part of their cellular machinery. In this study, we focus on mitogen-activated protein kinase (MAPK) signaling pathway during Müller glial cell differentiation and proliferation. We found that both MAPK and STAT3 signaling pathways are present during Müller glial cell development. Ciliary neurotrophic factor (CNTF)-stimulated Müller glial cell proliferation is associated with early developmental stages. Specific inhibition of MAPK phosphorylation significantly reduced the number of Müller glial cells with or without CNTF stimulation. These results suggested that the MAPK signal transduction pathway is important in the formation of Müller glial cells during retina development.  相似文献   

12.
Summary The localization of S-100 protein was studied in histological sections of retinae from adult rabbits. By use of double-immunolabeling techniques it was shown that most but not all radially oriented vimentin-positive Müller cells were co-labeled by an antiserum to S-100 protein. Glial fibrillary acidic protein-positive astrocytes, which in the rabbit retina are restricted to the medullary rays formed by myelinated optic nerve fibers, consistently showed S-100 protein immunoreactivity. The present report shows that, with respect to S-100 protein staining, Müller cells represent a heterogeneous population of glial elements.  相似文献   

13.
Glycine (Gly) is considered an obligatory co-agonist at NMDA receptors. Müller glia from the retina harbor functional NMDA receptors, as well as low and high affinity Gly transporters, the later identified as GLYT1. We here studied the regulation of Gly transport in primary cultures of Müller glia, as this process could contribute to the modulation of NMDA receptor activity at glutamatergic synapses in the retina. We demonstrate that neither glutamate stimulation nor the activation or inhibition of protein kinases A or C modify transport. In order to assess a function for Ca2+ and calmodulin (CaM)-dependent processes in the regulation of Gly transport, we explored the participation of Ca2+ concentration, CaM and Ca2+/CaM-dependent enzymes on Gly transporter activity. ATP and carbachol, known to induce Ca2+ waves in Müller cells, as well as caffeine-induced Ca2+ release from intracellular stores stimulated transport, whereas Ca2+ chelation by BAPTA-AM markedly reduced transport. CaM inhibitors W-7, ophiobolin A, R-24571 and trifluoperazine, induced a specific dose-dependent inhibition of transport. The inhibition of CaMKII by the autocamtide-2-related inhibitory peptide or by KN62 caused a decrease in transport which, in the case of KN62, was due to the abolition of the high affinity component, ascribed to GLYT1. Our results further suggest that Gly transport is under cytoskeletal control, as activation of calpain by major increases in [Ca2+]i induced by ionophores, as well as actin destabilization clearly inhibit uptake. We here demonstrate for the first time the participation of CaM, CaMKII and the actin cytoskeleton in the regulation of Gly transport in glia. Ca2+ waves are induced in Müller cells by distinct neuroactive compounds released by neurons and glia, hence the regulation of [Gly] by this system may be of physiological relevance in the control of retinal excitability.  相似文献   

14.
The relative regulatory roles of the pituitary gonadotropins, luteinizing hormone and follicle stimulating hormone in the spermatogonial proliferation has been studied using specific antibodies against these hormones in the immature rats. Immunoneutralization of lu teinizing hormone for 7 days resulted in significant reduction in tetraploid cells and total absence of haploid cells,while there was a relative increase in the diploid population. This was also accomopanied by a decrease in spermatogonial proliferation as indicated by a decrease in [3H] thymidine incorpor-ation into DNA by purified spermatogonia. Administration of follicle stimulating hormone a/s for 7 days also caused a significant decrease in the rate of spermatogonial proliferation. Withdrawal of follicle stimulating hormone led to a significant reduction in tetraploid and haploid cells. However interestingly,it failed to totally abolish the appearance of these cells. Administration of testosterone (3 mg/day/rat) for 2 days along with the gonadotropin a/s could partially reverse the effect on spermatogonial proliferation. It is concluded that (i) both luteinizing hormone and follicle stimulating hormone are involved in spermatogonial proliferation, (ii) lack of testosterone consequent of the neutralization of luteinizing hormone prevented the entry of spermatogonial cells into meiosis, (iii) testosterone may be involved in spermatogonia] proliferation providing a mitotic signal and (v) both follicle stimulating hormone and testosterone act synergistically and lack of any one of the hormones results in impairment of spermatogonial proliferation. A part of the data was presented at the 16th International Congress of Biochemistry and Molecular Biology, New Delhi, September 1994.  相似文献   

15.
16.
ATP can be released from neurons and act as a neuromodulator in the nervous system. Besides neurons, cortical astrocytes also are capable of releasing ATP from acidic vesicles in a Ca(2+)-dependent way. In the present work, we investigated the release of ATP from Müller glia cells of the chick embryo retina by examining quinacrine staining and by measuring the extracellular levels of ATP in purified Müller glia cultures. Our data revealed that glial cells could be labeled with quinacrine, a reaction that was prevented by incubation of the cells with 1μM bafilomycin A1 or 2μM Evans blue, potent inhibitors of vacuolar ATPases and of the vesicular nucleotide transporter, respectively. Either 50mM KCl or 1mM glutamate was able to decrease quinacrine staining of the cells, as well as to increase the levels of ATP in the extracellular medium by 77% and 89.5%, respectively, after a 5min incubation of the cells. Glutamate-induced rise in extracellular ATP could be mimicked by 100μM kainate (81.5%) but not by 100μM NMDA in medium without MgCl(2) but with 2mM glycine. However, both glutamate- and kainate-induced increase in extracellular ATP levels were blocked by 50μM of the glutamatergic antagonists DNQX and MK-801, suggesting the involvement of both NMDA and non-NMDA receptors. Extracellular ATP accumulation induced by glutamate was also blocked by incubation of the cells with 30μM BAPTA-AM or 1μM bafilomycin A1. These results suggest that glutamate, through activation of both NMDA and non-NMDA receptors, induces the release of ATP from retinal Müller cells through a calcium-dependent exocytotic mechanism.  相似文献   

17.
18.
The sequence of morphological differentiation of Müller cells in the chick retina was investigated in relation to the differentiation of the retinal neurons using the Golgi method. From the beginning of differentiation, the Müller cell develops spurs and lateral processes. Some of these glial processes become transformed into accessory prolongations of the Müller cell. From the 17th or 18th day of incubation, the morphology of the Müller cells is similar to that of the adult retina. On the basis of their inner prolongation, two types of Müller cells were identified. The first type, with diffuse and abundant descending processes, is identical to that described classically. The second type is a cell characterized by sparse and scanty inner ramifications. This report also describes electron microscopic observations of Müller cells and their enwrapping relationship with the axons of the optic nerve fiber layer.  相似文献   

19.
20.
We report the morphological differences of Müller cells in relation to their topography, using the Golgi method. Müller cells in the central retina are long and slender, with numerous inner prolongations. In the peripheral retina, the morphology of the Müller cells adapts to the reduced thickness of the retinal layers. In this zone, they are short and have thick inner prolongations which end in a large foot in the internal limiting membrane. In the optic disc margin, Müller cells have a particular morphology characterized by thick, arched prolongations that in general form a glial network between the retina and optic nerve. The ultrastructure of these cells is also described. The results are discussed with respect to the nature of Müller cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号