首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial rates of E1-catalyzed E2 transthiolation have been used as a reporter function to probe the mechanism of 125I-ubiquitin transfer between activation and ligation half-reactions of ubiquitin conjugation. A functional survey of 11 representative human E2 paralogs reveals similar Km for binding to human Uba1 ternary complex (Km(ave)=121±72 nm) and kcat for ubiquitin transfer (kcat(ave)=4.0±1.2 s(-1)), suggesting that they possess a conserved binding site and transition state geometry and that they compete for charging through differences in intracellular concentration. Sequence analysis and mutagenesis localize this binding motif to three basic residues within Helix 1 of the E2 core domain, confirmed by transthiolation kinetics. Partial conservation of the motif among E2 paralogs not recognized by Uba1 suggests that another factor(s) account for the absolute specificity of cognate E2 binding. Truncation of the Uba1 carboxyl-terminal β-grasp domain reduces cognate Ubc2b binding by 31-fold and kcat by 3.5×10(4)-fold, indicating contributions to E2 binding and transition state stabilization. Truncation of the paralogous domain from the Nedd8 activating enzyme has negligible effect on cognate Ubc12 transthiolation but abrogates E2 specificity toward non-cognate carrier proteins. Exchange of the β-grasp domains between ubiquitin and Nedd8 activating enzymes fails to reverse the effect of truncation. Thus, the conserved Helix 1 binding motif and the β-grasp domain direct general E2 binding, whereas the latter additionally serves as a specificity filter to exclude charging of non-cognate E2 paralogs in order to maintain the fidelity of downstream signaling.  相似文献   

2.
Rate studies have been employed as a reporter function to probe protein-protein interactions within a biochemically defined reconstituted N-end rule ubiquitin ligation pathway. The concentration dependence for E1-catalyzed HsUbc2b/E2(14kb) transthiolation is hyperbolic and yields K(m) values of 102 +/- 13 nm and 123 +/- 19 nm for high affinity binding to rabbit and human E1/Uba1 orthologs. Competitive inhibition by the inactive substrate and product analogs HsUbc2bC88A (K(i) = 104 +/- 15 nm) and HsUbc2bC88S-ubiquitin oxyester (K(i) = 169 +/- 17 nm), respectively, indicates that the ubiquitin moiety contributes little to E1 binding. Under conditions of rate-limiting E3alpha-catalyzed conjugation to human alpha-lactalbumin, HsUbc2b-ubiquitin thiolester exhibits a K(i) of 54 +/- 18 nm and is competitively inhibited by the substrate analog HsUbc2bC88S-ubiquitin oxyester (K(i) = 66 +/- 29 nm). In contrast, the ligase product analog HsUbc2bC88A exhibits a K(i) of 440 +/- 55 nm with respect to the wild type HsUbc2b-ubiquitin thiolester, demonstrating that ubiquitin binding contributes to the ability of E3alpha to discriminate between substrate and product E2. A survey of E1 and E2 isoform distribution in selected cell lines demonstrates that Ubc2 isoforms are the predominant intracellular ubiquitin carrier protein. Intracellular levels of E1 and Ubc2 are micromolar and approximately equal based on in vitro quantitation by stoichiometric (125)I-ubiquitin thiolester formation. Comparison of intracellular E1 and Ubc2 pools with the corresponding ubiquitin pools reveals that most of the free ubiquitin in cells is present as thiolesters to the components of the conjugation pathways. The present data represent the first comprehensive analysis of protein interactions within a ubiquitin ligation pathway.  相似文献   

3.
To identify deneddylases, proteases with specificity for hydrolysis of Nedd8 derivatives, a facile method was developed for the synthesis of Nedd8 amidomethylcoumarin (a substrate) and Nedd8 vinyl sulfone (an inhibitor). Deneddylase activity is necessary to reverse the conjugation of Nedd8 to cullin, a modification that regulates at least some ubiquitin ligases. The reaction of Nedd8 vinyl sulfone with L-M(TK-) mouse fibroblast lysates identified two deneddylases. The deubiquitinating enzyme UCH-L3 is labeled by both ubiquitin vinyl sulfone and Nedd8 vinyl sulfone. In contrast, a second and more selective enzyme is labeled only by Nedd8 vinyl sulfone. This protein, DEN1, is a 221-amino acid thiol protease that is encoded by an open reading frame previously annotated as SENP8. Recombinant human DEN1 shows significant specificity for Nedd8 and catalyzes the hydrolysis of Nedd8 amidomethylcoumarin with a Km of 51 nm and a kcat of7s-1. The catalytic efficiency of DEN1 acting upon ubiquitin amidomethylcoumarin is 6 x 10-4 that of Nedd8 amidomethylcoumarin and its activity on SUMO-1 amidomethylcoumarin is undetectable. This selectivity was unexpected as DEN1 is most closely related to enzymes that catalyze desumoylation. This observation expands to four the number of DUB families with members that can process the C terminus of Nedd8.  相似文献   

4.
The Bacteroides fragilis capsular polysaccharide complex is the major virulence factor for abscess formation in human hosts. Polysaccharide B of this complex contains a 2-aminoethylphosphonate functional group. This functional group is synthesized in three steps, one of which is catalyzed by phosphonopyruvate decarboxylase. In this paper, we report the cloning and overexpression of the B. fragilis phosphonopyruvate decarboxylase gene (aepY), purification of the phosphonopyruvate decarboxylase recombinant protein, and the extensive characterization of the reaction that it catalyzes. The homotrimeric (41,184-Da subunit) phosphonopyruvate decarboxylase catalyzes (kcat = 10.2 +/- 0.3 s-1) the decarboxylation of phosphonopyruvate (Km = 3.2 +/- 0.2 microm) to phosphonoacetaldehyde (Ki = 15 +/- 2 microm) and carbon dioxide at an optimal pH range of 7.0-7.5. Thiamine pyrophosphate (Km = 13 +/- 2 microm) and certain divalent metal ions (Mg(II) Km = 82 +/- 8 microm; Mn(II) Km = 13 +/- 1 microm; Ca(II) Km = 78 +/- 6 microm) serve as cofactors. Phosphonopyruvate decarboxylase is a member of the alpha-ketodecarboxylase family that includes sulfopyruvate decarboxylase, acetohydroxy acid synthase/acetolactate synthase, benzoylformate decarboxylase, glyoxylate carboligase, indole pyruvate decarboxylase, pyruvate decarboxylase, the acetyl phosphate-producing pyruvate oxidase, and the acetate-producing pyruvate oxidase. The Mg(II) binding residue Asp-260, which is located within the thiamine pyrophosphate binding motif of the alpha-ketodecarboxylase family, was shown by site-directed mutagenesis to play an important role in catalysis. Pyruvate (kcat = 0.05 s-1, Km = 25 mm) and sulfopyruvate (kcat approximately 0.05 s-1; Ki = 200 +/- 20 microm) are slow substrates for the phosphonopyruvate decarboxylase, indicating that this enzyme is promiscuous.  相似文献   

5.
Conjugation of ubiquitin and other Class 1 ubiquitin-like polypeptides to specific protein targets serves diverse regulatory functions in eukaryotes. The obligatory first step of conjugation requires ATP-coupled activation of the ubiquitin-like protein by members of a superfamily of evolutionarily related enzymes. Kinetic and equilibrium studies of the human ubiquitin-activating enzyme (HsUba1a) reveal that mutations within the ATP.Mg(2+) binding site have remarkably pleiotropic effects on the catalytic phenotype of the enzyme. Mutation of Asp(576) or Lys(528) results in dramatically impaired binding affinities for ATP.Mg(2+), a shift from ordered to random addition in co-substrate binding, and a significantly reduced rate of ternary complex formation that shifts the rate-limiting step to ubiquitin adenylate formation. Mutations at neither position affect the affinity of HsUbc2b binding; however, differences in k(cat) values determined from ternary complex formation versus HsUbc2b transthiolation suggest that binding of the E2 enhances the rate of bound ubiquitin adenylate formation. These results confirm that Asp(576) and Lys(528) are important for ATP.Mg(2+) binding but are essential catalytic groups for ubiquitin adenylate transition state stabilization. The latter mechanistic effect explicates the observed loss-of-function phenotype associated with mutation of residues paralogous to Asp(576) within the activating enzymes for other ubiquitin-like proteins.  相似文献   

6.
Acryloyl-CoA reductase from Clostridium propionicum catalyses the irreversible NADH-dependent formation of propionyl-CoA from acryloyl-CoA. Purification yielded a heterohexadecameric yellow-greenish enzyme complex [(alpha2betagamma)4; molecular mass 600 +/- 50 kDa] composed of a propionyl-CoA dehydrogenase (alpha2, 2 x 40 kDa) and an electron-transferring flavoprotein (ETF; beta, 38 kDa; gamma, 29 kDa). A flavin content (90% FAD and 10% FMN) of 2.4 mol per alpha2betagamma subcomplex (149 kDa) was determined. A substrate alternative to acryloyl-CoA (Km = 2 +/- 1 microm; kcat = 4.5 s-1 at 100 microm NADH) is 3-buten-2-one (methyl vinyl ketone; Km = 1800 microm; kcat = 29 s-1 at 300 microm NADH). The enzyme complex exhibits acyl-CoA dehydrogenase activity with propionyl-CoA (Km = 50 microm; kcat = 2.0 s-1) or butyryl-CoA (Km = 100 microm; kcat = 3.5 s-1) as electron donor and 200 microm ferricenium hexafluorophosphate as acceptor. The enzyme also catalysed the oxidation of NADH by iodonitrosotetrazolium chloride (diaphorase activity) or by air, which led to the formation of H2O2 (NADH oxidase activity). The N-terminus of the dimeric propionyl-CoA dehydrogenase subunit is similar to those of butyryl-CoA dehydrogenases from several clostridia and related anaerobes (up to 55% sequence identity). The N-termini of the beta and gamma subunits share 40% and 35% sequence identities with those of the A and B subunits of the ETF from Megasphaera elsdenii, respectively, and up to 60% with those of putative ETFs from other anaerobes. Acryloyl-CoA reductase from C. propionicum has been characterized as a soluble enzyme, with kinetic properties perfectly adapted to the requirements of the organism. The enzyme appears not to be involved in anaerobic respiration with NADH or reduced ferredoxin as electron donors. There is no relationship to the trans-2-enoyl-CoA reductases from various organisms or the recently described acryloyl-CoA reductase activity of propionyl-CoA synthase from Chloroflexus aurantiacus.  相似文献   

7.
8.
A general method is presented here for the determination of the Km, kcat, and kcat/Km of fluorescence resonance energy transfer (FRET) substrates using a fluorescence plate reader. A simple empirical method for correcting for the inner filter effect is shown to enable accurate and undistorted measurements of these very important kinetic parameters. Inner filter effect corrected rates of hydrolysis of a FRET peptide substrate by hepatitis C virus (HCV) NS3 protease at various substrate concentrations enabled measurement of a Km value of 4.4 +/- 0.3 microM and kcat/Km value of 96,500 +/- 5800 M-1 s-1. These values are very close to the HPLC-determined Km value of 4.6 +/- 0.7 microM and kcat/Km value of 92,600 +/- 14,000 M-1 s-1. We demonstrate that the inner filter effect correction of microtiter plate reader velocities enables rapid measurement of Ki and Ki' values and kinetic inhibition mechanisms for HCV NS3 protease inhibitors.  相似文献   

9.
E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5′-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells.  相似文献   

10.
The SCF-ROC1 ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase complex targets the ubiquitination and subsequent degradation of protein substrates required for the regulation of cell cycle progression and signal transduction pathways. We have previously shown that ROC1-CUL1 is a core subassembly within the SCF-ROC1 complex, capable of supporting the polymerization of ubiquitin. This report describes that the CUL1 subunit of the bacterially expressed, unmodified ROC1-CUL1 complex is conjugated with Nedd8 at Lys-720 by HeLa cell extracts or by a purified Nedd8 conjugation system (consisting of APP-BP1/Uba3, Ubc12, and Nedd8). This covalent linkage of Nedd8 to CUL1 is both necessary and sufficient to markedly enhance the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. A mutation of Lys-720 to arginine in CUL1 eliminates the Nedd8 modification, abolishes the activation of the ROC1-CUL1 ubiquitin ligase complex, and significantly reduces the ability of SCF(HOS/beta)(-TRCP)-ROC1 to support the ubiquitination of phosphorylated IkappaBalpha. Thus, although regulation of the SCF-ROC1 action has been previously shown to preside at the level of recognition of a phosphorylated substrate, we demonstrate that Nedd8 is a novel regulator of the efficiency of polyubiquitin chain synthesis and, hence, promotes rapid turnover of protein substrates.  相似文献   

11.
The interaction between six class C beta-lactamases and various penicillins has been studied. All the enzymes behaved in a very uniform manner. Benzylpenicillin exhibited relatively low kcat. values (14-75 s-1) but low values of Km resulted in high catalytic efficiencies [kcat./Km = 10 X 10(6)-75 X 10(6) M-1.s-1]. The kcat. values for ampicillin were 10-100-fold lower. Carbenicillin, oxacillin cloxacillin and methicillin were very poor substrates, exhibiting kcat. values between 1 x 10(-3) and 0.1 s-1. The Km values were correspondingly small. It could safely be hypothesized that, with all the tested substrates, deacylation was rate-limiting, resulting in acyl-enzyme accumulation.  相似文献   

12.
Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form and characterized the active site by mutagenesis. The KmPRPP (18.4 +/- 3.5 microM) and kcat (2.7 +/- 0.3 s-1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 +/- 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be noncompetitive (Ki = 81.1 microM) and competitive (Ki = 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments aimed at investigating the side chains recognizing PRPP showed that 5'-phosphate contacts (T159A and T162A) had the largest (25- and 155-fold, respectively) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety or contacts to the 2'-OH group. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters and employ mechanistic strategies reminiscent of the broader PRT superfamily.  相似文献   

13.
Production of thrombin by phospholipid-bound prothrombinase complexes has been described as being regulated by the prothrombin concentration in the buffer (free-substrate model) as well as by the concentration of prothrombin adsorbed to the phospholipid surface (bound-substrate model). We studied simultaneous adsorption and conversion of prothrombin on planar bilayers consisting of 20% dioleoylphosphatidylserine and 80% dioleoylphosphatidylcholine. A transport limitation in the conversion of prothrombin was prevented by using a very low (0.3 fmol cm-2) amount of prothrombinase on the bilayer. The Michaelis and catalytic constants thus found were Km = 5.8 +/- 0.7 nM and kcat = 33 +/- 1 s-1 (mean +/- S.D.). The apparent bimolecular rate constant Kcat/Km = 5.7 x 10(9) M-1 s-1 exceeds the theoretically maximal value for the free-substrate model. In contrast, kcat/Km is within the range expected for a diffusion-controlled bound-substrate model. A similar mechanism for prothrombin conversion in suspensions of phospholipid vesicles would imply increasing kcat/Km values for increasing vesicle diameter. This prediction was tested and a 3-fold increase in kcat/Km values was indeed found for vesicles 60-80 nm in diameter compared to vesicles of 20-30 nm diameter. It is concluded that thrombin production is dependent on protein fluxes rather than on protein concentrations.  相似文献   

14.
Human Hageman factor, a plasma proteinase zymogen, was activated in vitro under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37 degrees C) by Pseudomonas aeruginosa elastase, which is a zinc-dependent tissue destructive neutral proteinase. This activation was completely inhibited by a specific inhibitor of the elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2, at a concentration as low as 10 microM. In this activation Hagemen factor was cleaved, in a limited fashion, liberating two fragments with apparent molecular masses of 40 and 30 kDa, respectively. The appearance of the latter seemed to correspond chronologically to the generation of activated Hageman factor. Kinetic parameters of the enzymatic activation were kcat = 5.8 x 10(-3) s-1, Km = 4.3 x 10(-7) M and kcat/Km = 1.4 x 10(4) M-1 x s-1. This Km value is close to the plasma concentration of Hageman factor. Another zinc-dependent proteinase, P. aeruginosa alkaline proteinase, showed a negligible Hageman factor activation. In the presence of a negatively charged soluble substance, dextran sulfate (0.3-3 micrograms/ml), the activation rate by the elastase increased several fold, with the kinetic parameters of kcat = 13.9 x 10(-3) s-1, Km = 1.6 x 10(-7) M and kcat/Km = 8.5 x 10(4) M-1 x s-1. These results suggested a participation of the Hageman factor-dependent system in the inflammatory response to pseudomonal infections, due to the initiation of the system by the bacterial elastase.  相似文献   

15.
Bovine erythrocyte glutathione (GSH) peroxidase (GPX, EC 1.11.1.9) was examined for GSH-dependent dehydroascorbate (DHA) reductase (EC 1.8.5.1) and thioltransferase (EC 1.8.4.1) activities. Using the direct assay method for GSH-dependent DHA reductase activity, GPX had a kcat (app) of 140 +/- 9 min-1 and specificity constants (kcat/Km(app)) of 5.74 +/- 0.78 x 10(2) M-1s-1 for DHA and 1.18 +/- 0.17 x 10(3) M-1s-1 for GSH based on the monomer Mr of 22,612. Using the coupled assay method for thioltransferase activity, GPX had a kcat (app) of 186 +/- 9 min-1 and specificity constants (app) of 1. 49 +/- 0.14 x 10(3) M-1s-1 for S-sulfocysteine and 1.51 +/- 0.18 x 10(3) M-1s-1 for GSH based on the GPX monomer molecular weight. GPX has a higher specificity constant for S-sulfocysteine than DHA, and both assay systems gave nearly identical specificity constants for GSH. The DHA reductase and thioltransferase activities of GPX adds to the repertoire of functions of this enzyme as an important protector against cellular oxidative stress.  相似文献   

16.
In the multienzyme ubiquitin-dependent proteolytic pathway, conjugation of ubiquitin to target proteins serves as a signal for protein degradation. Rabbit reticulocytes possess a family of proteins, known as E2's, that form labile ubiquitin adducts by undergoing transthiolation with the ubiquitin thiol ester form of ubiquitin activating enzyme (E1). Only one E2 appears to function in ubiquitin-dependent protein degradation. The others have been postulated to function in regulatory ubiquitin conjugation. We have purified and characterized a previously undescribed E2 from rabbit reticulocytes. E2(230K) is an apparent monomer with a molecular mass of 230 kDa. The enzyme forms a labile ubiquitin adduct in the presence of E1, ubiquitin, and MgATP and catalyzes conjugation of ubiquitin to protein substrates. Exogenous protein substrates included yeast cytochrome c(Km = 125 mu M; kcat approximately 0.37 min-1) and histone H3 (Km less than 1.3 mu M; kcat approximately 0.18 min-1) as well as lysozyme, alpha-lactalbumin, and alpha-casein. E2(230K) did not efficiently reconstitute Ub-dependent degradation of substrates that it conjugated, either in the absence or in the presence of the ubiquitin-protein ligase that is involved in degradation. E2(230K) may thus be an enzyme that functions in regulatory Ub conjugation. Relative to other E2's, which are very iodoacetamide sensitive, E2(230K) was more slowly inactivated by iodoacetamide (k(obs) = 0.037 min-1 at 1.5 mM iodoacetamide; pH 7.0, 37 degrees C). E2(230K) was also unique among E2's in being subject to inactivation by inorganic arsenite (k(i)max = 0.12 min-1; K(0.5) = 3.3 mM; pH 7.0, 37 degrees C). Arsenite is considered to be a reagent specific for vicinal sulfhydryl sites in proteins, and inhibition is usually rapidly reversed upon addition of competitive dithiol compounds. Inactivation of E2(230K) by arsenite was not reversed within 10 min after addition of dithiothreitol at a concentration that blocked inactivation if it was premixed with arsenite; inactivation is therefore irreversible or very slowly reversible. We postulate that a conformation change of E2(230K) may be rate-limiting for interaction of enzyme thiol groups with arsenite.  相似文献   

17.
The biological effects of the ISG15 protein arise in part from its conjugation to cellular targets as a primary response to interferon-alpha/beta induction and other markers of viral or parasitic infection. Recombinant full-length ISG15 has been produced for the first time in high yield by mutating Cys78 to stabilize the protein and by cloning in a C-terminal arginine cap to protect the C terminus against proteolytic inactivation. The cap is subsequently removed with carboxypeptidase B to yield mature biologically active ISG15 capable of stoichiometric ATP-dependent thiolester formation with its human UbE1L activating enzyme. The three-dimensional structure of recombinant ISG15C78S was determined at 2.4-A resolution. The ISG15 structure comprises two beta-grasp folds having main chain root mean square deviation (r.m.s.d.) values from ubiquitin of 1.7 A (N-terminal) and 1.0 A (C-terminal). The beta-grasp domains pack across two conserved 3(10) helices to bury 627 A2 that accounts for 7% of the total solvent-accessible surface area. The distribution of ISG15 surface charge forms a ridge of negative charge extending nearly the full-length of the molecule. Additionally, the N-terminal domain contains an apolar region comprising almost half its solvent accessible surface. The C-terminal domain of ISG15 was superimposed on the structure of Nedd8 (r.m.s.d. = 0.84 A) bound to its AppBp1-Uba3 activating enzyme to model ISG15 binding to UbE1L. The docking model predicts several key side-chain interactions that presumably define the specificity between the ubiquitin and ISG15 ligation pathways to maintain functional integrity of their signaling.  相似文献   

18.
Both cyclooxygenase and peroxidase reactions of prostaglandin H synthase were studied in the presence and absence of diethyldithiocarbamate and glycerol at 4 degrees C in phosphate buffer (pH 8.0). Diethyldithiocarbamate reacts with the high oxidation state intermediates of prostaglandin H synthase; it protects the enzyme from bleaching and loss of activity by its ability to act as a reducing agent. For the reaction of diethyldithiocarbamate with compound I, the second-order rate constant k2,app, was found to fall within the range of 5.8 x 10(6) +/- 0.4 x 10(6) M-1.s-1 less than k2,app less than 1.8 x 10(7) +/- 0.1 x 10(7) M-1.s-1. The reaction of diethyldithiocarbamate with compound II showed saturation behavior suggesting enzyme-substrate complex formation, with kcat = 22 +/- 3 s-1, Km = 67 +/- 10 microM, and the second-order rate constant k3,app = 2.0 x 10(5) +/- 0.2 x 10(5) M-1.s-1. In the presence of both diethyldithiocarbamate and 30% glycerol, the parameters for compound II are kcat = 8.8 +/- 0.5 s-1, Km = 49 +/- 7 microM, and k3,app = 1.03 x 10(5) +/- 0.07 x 10(5) M-1.s-1. The spontaneous decay rate constants of compounds I and II (in the absence of diethyldithiocarbamate) are 83 +/- 5 and 0.52 +/- 0.05 s-1, respectively, in the absence of glycerol; in the presence of 30% glycerol they are 78 +/- 5 and 0.33 +/- 0.02 s-1, respectively. Neither cyclooxygenase activity nor the rate constant for compound I formation using 5-phenyl-4-pentenyl-1-hydroperoxide is altered by the presence of diethyldithiocarbamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A study was carried out to determine the Michaelian parameters relative to the action of chymosin and pepsin A on bond Phe105-Met106 of bovine kappa0-casein (carbohydrate-free fraction in micellar state). The reaction was performed in citrate buffer, pH 6.2, at 30 degrees C. The reaction mixture was analysed by reverse phase HPLC. Dosages of peptide 106-169 (caseino macropeptide) at different reaction times from recordings of its absorbance at 220 nm gave the initial rates of reaction at each substrate concentration. From these values the following parameters were determined: kcat = 68.5 s-1, Km = 0.048 mM, kcat/Km = 1,413 mM-1 s-1 for chymosin, and kcat = 45 s-1, Km = 0.018 mM, kcat/Km = 2,439 mM-1 s-1 for pepsin A. For chymosin they are similar to those obtained previously in dimethyl glutarate buffer, pH 6.6, at 30 degrees C, using fragment 98-111 of kappa-casein as substrate. It can thus be concluded that neither the micellar state nor the presence of the whole peptide chain of kappa-casein (our conditions) significantly affect the action of chymosin on fragment 98-111, which seems to contain all information that makes bond 105-106 highly sensitive to chymosin. For pepsin A, only the information contained in fragment 103-108 appears to be required.  相似文献   

20.
The 3C proteases of the encephalomyocarditis virus and the hepatitis A virus are both type III substrates for the mammalian ubiquitin-protein ligase E3alpha. The conjugation of ubiquitin to these proteins requires internal ten-amino acid-long protein destruction signal sequences. To evaluate how these destruction signals modulate interactions that must occur between E3alpha and the 3C proteases, we have kinetically analyzed the formation of ubiquitin-3C protease conjugates in a reconstituted system of purified E1, HsUbc2b/E2(14Kb), and human E3alpha. Our measurements show that the encephalomyocarditis virus 3C protease is ubiquitinated in this system with K(m) = 42 +/- 11 microm and V(max) = 0.051 +/- 0.01 pmol/min whereas the parameters for the ubiquitination of the hepatitis A virus 3C protease are K(m) = 20 +/- 5 microm and V(max) = 0.018 +/- 0.003 pmol/min. Mutations in the destruction signal sequences resulted in changes in the rate at which E3alpha conjugates ubiquitin to the altered 3C protease proteins. The K(m) and V(max) values for these reactions change proportionally in the same direction. These results suggest differences in rates of conjugation of ubiquitin to 3C proteases are primarily a k(cat) effect. Replacing specific encephalomyocarditis virus 3C protease lysine residues with arginine residues was found to increase, rather than decrease, the rate of ubiquitin conjugation, and the K(m) and V(max) values for these reactions are both higher than for the wild type protein. The ability of E3alpha to catalyze the conjugation of ubiquitin to both 3C proteases was found to be inhibited by lysylalanine and phenylalanylalanine, demonstrating that the same sites on E3alpha that bind destabilizing N-terminal amino acids in type I and II substrates also interact with the 3C proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号