首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Random left minus right deviations from symmetry in otherwise bilaterally symmetric traits may arise due to developmental instability in response to environmental stress. Here we test for variation in developmental instability, measured as asymmetry of (femur) size, among individuals belonging to four different genetically encoded colour morphs of the pygmy grasshopper Tetrix undulata (Sow.) (Orthoptera: Tetrigidae). Such a difference is expected under the hypotheses that perturbed growth and development and concomitant morphological asymmetry may result from exposure to unfavourable temperatures or costs associated with melanization, or reflect a by-product of past disease in individuals with poor immune responsiveness. Results from mixed model two-way ANOVAs uncovered no statistically significant directional asymmetry in femur size, whereas non-directional asymmetry was significant in each of the four different colour morphs. The degree of intraindividual, interlateral variance in femur size varied significantly among individuals belonging to different colour morphs, being considerably higher in the black morph, which also suffers the greatest risk of overheating, compared to the brown, striped and grey morphs. Asymmetry in femur size was not associated with one measure of immune responsiveness, the encapsulation response of individuals experimentally implanted with a novel antigen consisting of a nylon mono-filament. These results are consistent with the notion that individual pigmentation pattern may indirectly influence developmental instability and morphological asymmetry, via the effects of coloration on body temperature.Co-ordinating editor: Hurst  相似文献   

2.
Theory posits that selection on functionally interrelated characters will promote physical and genetic integration resulting in evolution of favourable trait-value combinations. The pygmy grasshopper Tetrix undulata (Orthoptera: Tetrigidae) displays a genetically encoded polymorphism for colour pattern. Colour morphs differ in several traits, including behaviours, thermal biology and body size. To examine if these size differences may reflect phenotypic plasticity of growth and development in response to temperature we used a split brood-design and reared hatchlings from mothers belonging to different morphs in different thermal environments (warm or cold) until maturity. We found that time to maturity was longer in the cold compared with the warm treatment. In the warm (but not in the cold) treatment time to maturity also varied among individuals born to mothers belonging to different colour morphs. Although low temperature and long development time are normally accompanied by increased body size in ectotherms, our results revealed no difference in size at maturity between individuals reared in the two temperature treatments. There was also an increase (not a decrease) in adult body size with shortened time to maturity across families within each treatment. Taken together, this suggests that body size is canalized against environmental perturbations, and that early maturation does not necessarily trade off against a size-mediated decrease in fecundity. Heritability of body size was moderate in magnitude. Moreover, body size at maturity varied among individuals belonging to different morphs and was influenced also by maternal colour morph, suggesting that a genetic correlation exists between colour pattern and body size. These findings suggest that different characters have evolved in concert and that the various colour morphs represent different evolutionary strategies, i.e., alternative peaks in a multi-modal adaptive landscape.  相似文献   

3.
Populations of pygmy grasshoppers, Tetrix subulata, exhibit genetically coded discontinuous variation in colour pattern. To determine whether the dynamics of this polymorphism is likely to be affected by selective processes, rather than by stochastic events, we experimentally manipulated colour patterns of free-ranging grasshoppers and then calculated and controlled for differences in capture probabilities between categories of individuals before estimating and testing for differences in survival using mark–recapture data and program SURGE . We found that paint treatment had a significant effect on survival, and that the relationship between colour pattern and survival was different in males and females. Our analyses also revealed significant differences between sexes in relative frequencies of natural colour morphs, body size, activity pattern, dispersal distance and microhabitat use. These findings accord with the hypothesis that colour pattern and behaviour jointly determine susceptibility to visual predators. Our data enable us to reject the null-hypothesis that colour pattern is a selectively neutral character and that the polymorphism is maintained solely by stochastic processes, such as random genetic drift and founder events. Indeed, the effect of dorsal coloration on survival, together with associations between colour pattern and many biologically important traits (body size, behaviour, thermal capacity, physiology and reproductive performance), suggests that colour pattern is likely to significantly influence individual fitness, and that the polymorphism must be maintained by some active process, such as spatially variable selection in combination with gene flow. The possible role of colour polymorphism as an intermediate stage in the evolution of sexual dichromatism in animals is discussed.  相似文献   

4.
The genetic basis of traits that are under sexual selection and that are involved in recognizing conspecific mates is poorly known, even in systems in which the phenotypic basis of these traits has been well studied. In the present study, we investigate genetic and environmental influences on nuptial colour, which plays important roles in sexual selection and sexual isolation in species pairs of limnetic and benthic threespine sticklebacks ( Gasterosteus aculeatus species complex). Previous work demonstrated that colour differences among species correlate to differences in the ambient light prevalent in their mating habitat. Red fish are found in clear water and black fish in red-shifted habitats. We used a paternal half-sib split-clutch design to investigate the genetic and environmental basis of nuptial colour. We found genetic differences between a red and a black stickleback population in the expression of both red and black nuptial colour. In addition, the light environment influenced colour expression, and genotype by environment interactions were also present. We found evidence for both phenotypic and genetic correlations between our colour traits; some of these correlations are in opposite directions for our red and black populations. These results suggest that both genetic change and phenotypic plasticity underlie the correlation of male colour with light environment.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 663–673.  相似文献   

5.
Genetic diversity within and among populations and species is influenced by complex demographic and evolutionary processes. Despite extensive research, there is no consensus regarding how landscape structure, spatial distribution, gene flow, and population dynamics impact genetic composition of natural populations. Here, we used amplified fragment length polymorphisms (AFLPs) to investigate effects of population size, geographic isolation, immigration, and gene flow on genetic structure, divergence, and diversity in populations of Tetrix subulata pygmy grasshoppers (Orthoptera: Tetrigidae) from 20 sampling locations in southern Sweden. Analyses of 1564 AFLP markers revealed low to moderate levels of genetic diversity (PPL = 59.5–90.1; Hj = 0.23–0.32) within and significant divergence among sampling localities. This suggests that evolution of functional traits in response to divergent selection is possible and that gene flow is restricted. Genetic diversity increased with population size and with increasing proportion of long‐winged phenotypes (a proxy of recent immigration) across populations on the island of Öland, but not on the mainland. Our data further suggested that the open water separating Öland from the mainland acts as a dispersal barrier that restricts migration and leads to genetic divergence among regions. Isolation by distance was evident for short interpopulation distances on the mainland, but gradually disappeared as populations separated by longer distances were included. Results illustrate that integrating ecological and molecular data is key to identifying drivers of population genetic structure in natural populations. Our findings also underscore the importance of landscape structure and spatial sampling scheme for conclusions regarding the role of gene flow and isolation by distance.  相似文献   

6.
1. Melanism – the occurrence of dark morphs – in insects has been attributed to differences in, among other things, thermoregulation and immune defence. Dark individuals are hypothesised to perform better in colder areas, and to exhibit stronger melanin‐based immune defence. 2. In the present study, the geographical distribution of two colour morphs in Aphodius depressus (Kugelann), its climatic correlates, and temporal stability was described. Underlying mechanisms were then targeted through experiments: the inheritance of colour through controlled crosses, heating rates by thermal imaging, physiological tolerance by critical thermal limits, and immune efficiency by melanisation of implants. 3. In A. depressus, colour appears inherited by simple Mendelian principles, with red dominating over black. The frequency of two colour morphs forms a large‐scale cline. In the South West of Finland, all individuals are black, whereas, in the North East, most are red. This pattern has remained constant over 13 years (1996–2008). 4. The geographical pattern was not attributable to thermoregulation: black morphs were more abundant in warmer rather than colder parts of the country. In experiments, we found no differences in the heating rate of the two morphs, or in their upper temperature maxima. Neither did the morphs differ in their response to artificial objects inserted in their haemolymph. 5. Overall, colour variation in A. depressus occurs as a stable, genetically determined dimorphism, governed by Mendelian inheritance. Yet, no support for prevailing theory of factors sustaining melanism was found. The reasons for colour polymorphism in insects may thus be complex, and should be sought on a case‐by‐case basis.  相似文献   

7.
Abstract.  According to biophysical principles, colour and size are important phenotypic factors that may influence body temperature and activity in ectothermic insects. In taxa showing female-limited polymorphism, males and female morphs differ in body colour, size and activity pattern. However, no previous study has evaluated whether such phenotypic and behavioural variation relates to differences between males and female morphs in thermal properties. In the present study, the relationships between body colour, size, activity and body temperature are examined under laboratory and field conditions, for the polymorphic damselfly Enallagma cyathigerum (Charpentier, 1840) (Odonata: Zygoptera). Contrary to expectation, males and female colour morphs of this species do not differ in thermal properties (i.e. heating characteristics or field body temperatures). When questioning phenotype and activity, temperature does not appear to be relevant for understanding the maintenance of female-limited polymorphism.  相似文献   

8.
Aphids (Homoptera: Aphidoidea) produce a number of different phenotypes in their life-cycle, among which are winged (alate) and wingless (apterous) morphs. Lowe & Taylor (1964) and Sutherland (1969a, b) were the first to suggest that aphid clones differ in their propensity to produce the winged morph and that in the pea aphid (Acyrthosiphon pisum Harris), this propensity is linked to the colour of the phenotype. We tested for the occurrence of genetic variation in winged morph production by rearing individuals from red and green clones of pea aphid under wing-inducing (crowding) and control conditions, and scored the phenotypes of their offspring. Clones differed significantly in alate production and red clones produced on average a higher proportion of winged morphs than green clones. Importantly, however, there was considerable variation between clones of the same colour. Broad-sense heritabilities of winged morph production were 0.69 (crowding treatment) and 0.63 (control). Clones also differed in the number of offspring they produced. When exposed to the crowding stimulus, aphids deferred offspring production, resulting in a higher number of offspring produced in the crowding treatment than in the control.  相似文献   

9.
The hypothesis that ornaments can honestly signal quality only if their expression is condition-dependent has dominated the study of the evolution and function of colour traits. Much less interest has been devoted to the adaptive function of colour traits for which the expression is not, or is to a low extent, sensitive to body condition and the environment in which individuals live. The aim of the present paper is to review the current theoretical and empirical knowledge of the evolution, maintenance and adaptive function of colour plumage traits for which the expression is mainly under genetic control. The finding that in many bird species the inheritance of colour morphs follows the laws of Mendel indicates that genetic colour polymorphism is frequent. Polymorphism may have evolved or be maintained because each colour morph facilitates the exploitation of alternative ecological niches as suggested by the observation that individuals are not randomly distributed among habitats with respect to coloration. Consistent with the hypothesis that different colour morphs are linked to alternative strategies is the finding that in a majority of species polymorphism is associated with reproductive parameters, and behavioural, life-history and physiological traits. Experimental studies showed that such covariations can have a genetic basis. These observations suggest that colour polymorphism has an adaptive function. Aviary and field experiments demonstrated that colour polymorphism is used as a criterion in mate-choice decisions and dominance interactions confirming the claim that conspecifics assess each other's colour morphs. The factors favouring the evolution and maintenance of genetic variation in coloration are reviewed, but empirical data are virtually lacking to assess their importance. Although current theory predicts that only condition-dependent traits can signal quality, the present review shows that genetically inherited morphs can reveal the same qualities. The study of genetic colour polymorphism will provide important and original insights on the adaptive function of conspicuous traits.  相似文献   

10.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits.  相似文献   

11.
As temperatures increase, there is growing evidence that species across much of the tree of life are getting smaller. These climate change-driven size reductions are often interpreted as a temporal analogue of the observation that individuals within a species tend to be smaller in the warmer parts of the species'' range. For ectotherms, there has been a broad effort to understand the role of developmental plasticity in temperature–size relationships, but in endotherms, this mechanism has received relatively little attention in favour of selection-based explanations. We review the evidence for a role of developmental plasticity in warming-driven size reductions in birds and highlight insulin-like growth factors as a potential mechanism underlying plastic responses to temperature in endotherms. We find that, as with ectotherms, changes in temperature during development can result in shifts in body size in birds, with size reductions associated with warmer temperatures being the most frequent association. This suggests developmental plasticity may be an important, but largely overlooked, mechanism underlying warming-driven size reductions in endotherms. Plasticity and natural selection have very different constraining forces, thus understanding the mechanism linking temperature and body size in endotherms has broad implications for predicting future impacts of climate change on biodiversity.  相似文献   

12.
Several insect species show an increase in cuticular melanism in response to high densities. In some species, there is evidence that this melanism is correlated with an up-regulation of certain immune system components, particularly phenoloxidase (PO) activity, and with the down-regulation of lysozyme activity, suggesting a trade-off between the two traits. As melanism has a genetic component, we selected both melanic and nonmelanic lines of the phase-polyphenic lepidopteran, Spodoptera littoralis, in order to test for a causative genetic link between melanism, PO activity and lysozyme activity, and to establish if there are any life-history costs associated with the melanic response. We found that, in fact, melanic lines had lower PO activity and higher lysozyme activity than nonmelanic lines, confirming a genetic trade-off between the two immune responses, but also indicating a genetic trade-off between melanism and PO activity. In addition, we found that lines with high PO activity had slower development rates suggesting that investment in PO, rather than in melanism, is costly.  相似文献   

13.
Detectability of different colour morphs under varying light conditions has been proposed as an important driver in the maintenance of colour polymorphism via disruptive selection. To date, no studies have tested whether different morphs have selective advantages under differing light conditions. We tested this hypothesis in the black sparrowhawk, a polymorphic raptor exhibiting a discrete white and dark morph, and found that prey provisioning rates differ between the morphs depending on light condition. Dark morphs delivered more prey in lower light conditions, while white morphs provided more prey in brighter conditions. We found support for the role of breeding season light level in explaining the clinal pattern of variation in morph ratio across the species range throughout South Africa. Our results provide the first empirical evidence supporting the hypothesis that polymorphism in a species, and the spatial structuring of morphs across its distribution, may be driven by differential selective advantage via improved crypsis, under varying light conditions.  相似文献   

14.
15.
The performance of most animals deteriorates with age. Motivated by the inconsistency in the literature regarding the effect of parental age on offspring traits and performance, we studied how parental age affects offspring development time, body mass, and starvation and cold tolerance in the red flour beetle (Tribolium castaneum). Offspring of old parents pupated later and at a higher body mass, and there was a general positive correlation between body mass and starvation tolerance. Despite their higher body mass, offspring of old parents tolerated starvation less well than those of young parents, emphasizing the impaired performance of the former. However, parental age did not affect offspring thermal tolerance and offspring of old parents were not more sensitive to cold shock than those of young parents. We also examined how ageing affects body mass and cold tolerance in the parental generations. By contrast to the effect of ontogeny on thermal tolerance, which is better known, change in thermal tolerance with age is seldom studied and can take different shapes. Old beetles were more sensitive to cold shock than younger beetles. Similar to cold tolerance, body mass decreased with age. In summary, older beetles reflect a worse physiological condition than younger ones. Ageing leads to impaired cold tolerance, lower body mass, lower number of offspring reaching adulthood, and deteriorated performance of the offspring, expressed as a lower starvation tolerance and a longer development time of the offspring. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 305–314.  相似文献   

16.
Female house crickets are attracted to male calling song containing a relatively high number of syllables per ‘chirp’, which tends to be produced by large males. In a previous study, we showed that this song characteristic is also positively and independently correlated with haemocyte load, an important determinant of the ability to produce an encapsulation response in insects. Females will therefore tend to select males with high encapsulation ability (and large body size) as mates. The present study demonstrates that variation in haemocyte load and body size, together with a second parameter of immune function (the ability to encapsulate a synthetic substrate), is heritable in the same population. Moreover, all three traits are shown to be positively genetically correlated. In favouring males that produce calling song with the preferred characteristics, females should therefore also tend to produce larger offspring with a greater ability to produce an encapsulation response.  相似文献   

17.
Most life history traits are positively influenced by body size, whereas disadvantages of large body size are poorly documented. To investigate presumed intrinsic costs of large size in the yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae), we established two replicates each of three body size laboratory selection lines (small, control and large; selection on males only), and subjected flies of the resulting extended body size range to various abiotic stresses. Response to selection was symmetrical in the small and large lines (realized h(2) = 0.16-0.18). After 24 generations of selection body size had changed by roughly 10%. Female size showed a correlated response to selection on male size, whereas sexual size dimorphism did not change. Development time also showed a correlated response as, similar to food limited flies, small line flies emerged earlier at smaller body size. At the lowest larval food limit possible, flies of all lines emerged at the same small body size after roughly the same development time; so overall phenotypic plasticity in body size and development time strongly increased following selection. Juvenile mortality increased markedly when food was extremely limited, large line flies showing highest mortality. Winter frost disproportionately killed large (line) flies because of their longer development times. Mortality at high temperatures was high but size-selective effects were inconsistent. In all environments the larger males suffered more. Initial growth rate was higher for males and at unlimited food. Small line individuals of both sexes grew slowest at unlimited larval food but fastest at limited larval food, suggesting a physiological cost of fast growth. Overall, extension of the natural body size range by artificial selection revealed some otherwise cryptic intrinsic juvenile viability costs of large size, mediated by longer development or faster growth, but only in stressful environments.  相似文献   

18.
We investigated the effect of temperature and wing morphology on the quantitative genetic variances and covariances of five size-related traits in the sand cricket, Gryllus firmus. Micropterous and macropterous crickets were reared in the laboratory at 24, 28 and 32 degrees C. Quantitative genetic parameters were estimated using a nested full-sib family design, and (co)variance matrices were compared using the T method, Flury hierarchy and Jackknife-manova method. The results revealed that the mean phenotypic value of each trait varied significantly among temperatures and wing morphs, but temperature reaction norms were not similar across all traits. Micropterous individuals were always smaller than macropterous individuals while expressing more phenotypic variation, a finding discussed in terms of canalization and life-history trade-offs. We observed little variation between the matrices of among-family (co)variation corresponding to each combination of temperature and wing morphology, with only one matrix of six differing in structure from the others. The implications of this result are discussed with respect to the prediction of evolutionary trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号