首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemorrhagic factors a and b were isolated from Trimeresurus mucrosquamatus venom by Sephadex G-100, CM-Sephadex C-50 and DEAE-Sephacel column chromatographies. The hemorrhagic factors were homogeneous, as established by a single band on acrylamide gel electrophoresis, isoelectric focusing and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Molecular weights of 15 000 and 27 000 were found for hemorrhagic factors a and b, respectively. Factor a possesses proteolytic activity hydrolyzing the His(10)-Leu(11), Tyr(16)-Leu(17) and Arg(22)-Gly(23) bonds of oxidized insulin B chain, whereas, factor b hydrolyzed only the Ala(14)-Leu(15) bond. Hemorrhagic activity of these hemorrhagic factors was inhibited by ethylenediaminetetraacetic acid, 1,10-phenanthroline or p-chloromercuribenzoate, but not by soybean trypsin inhibitor or diisopropyl fluorophosphate. The hemorrhagic factors were injected into the skin of the back of albino rabbits, and the minimum hemorrhagic dose of factors a and b was 1.7 and 2.3 micrograms, respectively. These purified hemorrhagic factors were not lethal at 15 micrograms/g in mice. Factor a hydrolyzed the B beta chain of fibrinogen, while factor b hydrolyzed the A alpha chain. Hemorrhagic factor a was shown to differ immunologically from factor b. Factors a and b produced systemic hemorrhage in internal organs such as the heart and stomach of mice. Moreover, factor b produced hemorrhage in the liver.  相似文献   

2.
Hemorrhagic factors a and b were isolated from Trimeresurus mucrosquamatus venom by Sephadex G-100, CM-Sephadex C-50 and DEAE-Sephacel column chromatographies. The hemorrhagic factors were homogeneous, as established by a single band on acrylamide gel electrophoresis, isoelectric focusing and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Molecular weights of 15 000 and 27 000 were found for hemorrhagic factors a and b, respectively. Factor a possesses proteolytic activity hydrolyzing the His(10)-Leu(11), Tyr(16)-Leu(17) and Arg(22)-Gly(23) bonds of oxidized insulin B chain, whereas, factor b hydrolyzed only the Ala(14)-Leu(15) bond. Hemorrhagic activity of these hemorrhagic factors was inhibited by ethylenediaminetetraacetic acid, 1,10-phenanthroline or p-chloromercuribenzoate, but not by soybean trypsin inhibitor or diisopropyl fluorophosphate. The hemorrhagic factors were injected into the skin of the back of albino rabbits, and the minimum hemorrhagic dose of factors a and b was 1.7 and 2.3 μg, respectively. These purified hemorrhagic factors were not lethal at 15 μg/g in mice. Factor a hydrolyzed the Bβ chain of fibrinogen, while factor b hydrolyzed the Aα chain. Hemorrhagic factor a was shown to differ immunologically from factor b. Factors a and b produced systemic hemorrhage in internal organs such as the heart and stomach of mice. Moreover, factor b produced hemorrhage in the liver.  相似文献   

3.
1. Ac1-Proteinase from the venom of Agkistrodon acutus was isolated in a homogeneous form by a previously published method. 2. Ac1-Proteinase possessed lethal, hemorrhagic, caseinolytic, azocaseinolytic, azoalbumin hydrolytic and hide powder azure hydrolytic activities. 3. The toxin also hydrolyzed the oxidized B chain of insulin and fibrinogen. The cleavage sites in the oxidized B chain of insulin were identified as Ala(14)-Leu(15) and Tyr(16)-Leu(17). The A alpha chain of fibrinogen was digested. 4. Biological properties of Ac1-Proteinase were investigated further and are reported in this paper.  相似文献   

4.
A small metalloproteinase that digests Azocoll was found in the uterus of the rat. Its activity increased to high levels during the postpartum period in parallel with the breakdown of the extracellular matrix exclusive of collagen (Sellers, A., and Woessner, J.F., Jr. (1980) Biochem. J. 189, 521-531). This enzyme has now been purified almost 7,000-fold to homogeneity from 12 g of tissue using molecular sieve chromatography, blue sepharose chromatography, and zinc-chelate chromatography. Gel electrophoresis with sodium dodecyl sulfate and dithiothreitol gives Mr = 28,000 for the latent form of the enzyme and Mr = 19,000 for the active form that arises spontaneously or by treatment with aminophenylmercuric acetate. The enzyme digests components of the extracellular matrix including gelatins of types I, III, IV, and V, fibronectin, and proteoglycan. It digests the alpha 2(I) chain of gelatin in preference to the alpha 1(I) chain and cleaves dinitrophenyl-Pro-Leu-Gly-Ile-Ala-Gly-Pro-D-Arg. It cleaves the B chain of insulin at two points: Ala14-Leu15 and Tyr16-Leu17. It has no action on collagens of types I, III, IV, or V at 26 degrees C and no action on elastin or phenylazo-Pro-Leu-Gly-Pro-D-Arg. The pH optimum is at pH 7 and the pI at 5.9. The enzyme requires zinc and calcium ions for activity; cobalt and strontium can partially replace these metal ions. The enzyme is not inhibited by low levels of phosphoramidon or Zincov. Its properties clearly distinguish it from collagenase, gelatinase (matrix metalloproteinase 2), and stromelysin (matrix metalloproteinase 3); it therefore constitutes a further member of the family of extracellular matrix metalloendopeptidases. The name matrix metalloproteinase 7 is proposed.  相似文献   

5.
Hemorrhage, necrosis and edema are some of the effects often observed following snake bites. This paper reports studies on the isolation and biological properties of hemorrhagic toxin from Crotalus viridis viridis (Prairie rattlesnake) venom. A hemorrhagic toxin was isolated from C. v. viridis venom by Sephadex G-50, DEAE-Sephacel and Q-Sepharose column chromatographies.The hemorrhagic toxin from C. v. viridis venom was shown to be homogenous as demonstrated by a single band on polyacrylamide gel electrophoresis and immunodiffusion. Its molecular weight was approximately 54,000 dallons, and it contained 471 amino acid residues. The toxin possessed hemorrhagic activity with a minimum hemorrhagic dose (MHD) of 0.11 μ g, and hydrolytic activity on dimethylcasein, casein, azocasein, azoalbumin, azocoll and hide powder azure. Hemorrhagic and casein hydrolytic activities were inhibited by EDTA, o-phenanthroline or dithiothreitol. The toxin contained 1 mole of zinc per mole of protein and zinc is essential for both hemorrhagic and proteolytic activities. Hemorrhagic toxin possessed hydrolytic activity on the B-chain of insulin, which cleaves His(5)-Leu(6), His(10)-Leu(11), Ala(14)-Leu(15), Tyr(16)-Leu(17) and Phe(24)-Phe(25) bonds. This toxin also hydrolyzed Aα and Bβ chains of fibrinogen. Intramuscular injections of hemorrhagic toxin caused an increase of creatine phosphokinase activity in mice serum from 50.3 mU/ml to 1133 mU/ml. A toxin isolated from C. v. viridis venom was shown to have strong hemorrhagic activity. Partial characterization is reported for this major hemorrhagic toxin in C. v. viridis venom.  相似文献   

6.
Ac3-Proteinase from the venom of Agkistrodon acutus was isolated in a homogeneous form by a previously published method. Ac3-Proteinase possessed lethal, hemorrhagic, caseinolytic, azocaseinolytic, dimethylcaseinolytic and hide powder azure hydrolytic activities. These activities were inhibited when Ac3-Proteinase was incubated with the metal chelators ethylenediaminetetraacetic acid (EDTA), ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), tetraethylenepentamine (TEP), 1,10-phenanthroline, phosphoramidon or beta-mercaptoethanol. The toxin also hydrolyzed the oxidized A and B chains of both insulin and fibrinogen. The cleavage sites in the oxidized B chain of insulin were identified as His(10)-Leu(11), Ala(14)-Leu(15), Tyr(16)-Leu(17) and Phe(24)-Phe(25). The A alpha chain of fibrinogen was digested first followed by hydrolysis of the B beta chain. Toxicological and biochemical properties of Ac3-Proteinase were investigated further and are reported in this paper.  相似文献   

7.
In our effort to identify the proteolytic specificity of various hemorrhagic toxins isolated from western diamondback rattlesnake venom, hemorrhagic toxin b was isolated in homogeneous form by previously published methods. Hemorrhagic toxin b hydrolyzed glucagon, producing six fragments. The proteolytic sites were identified as Thr(5)-Phe(6), Thr(10)-Ser(11), Asp(15)-Ser(16), Asp(21)-Phe(22) and Try(25)-Leu(26). When oxidized insulin B chain was used, proteolysis occurred at four sites: Asn(3)-Gln(4), His(10)-Leu(11), Tyr(16)-Leu(17) and Gly(23)-Phe(24). The proteolytic specificity of hemorrhagic toxin b is quite different from those of the nonvenom proteases such as thermomycolin, aspergillopeptidase c, alkaline protease from Aspergillus flavus, elastase, subtilisin and papain.  相似文献   

8.
We have previously shown that Vipera berus berus venom contains several factor X activating enzymes. In the present study we have investigated one of them. The enzyme was separated from venom by gel filtration on Sephadex G-100 superfine and chromatography on agarose HPS-7 and phenyl-agarose. The enzyme is a glycosylated metalloproteinase containing hexoses, hexosamines and neuraminic acid. The purified factor X activating enzyme consists of two equal chains (59 kDa). The specificity studies have shown that enzyme is nonspecific factor X activating proteinase hydrolysing also proteins such as azocasein, gelatin and fibrinogen. The enzyme hydrolyses oxidized insulin B-chain at the positions Ala14–Leu15 and Tyr16–Leu17 but it is inactive on fibrin, plasminogen and prothrombin. We used 8–10 amino acid residues containing peptides, which reproduce the sequence around the cleavage sites in factor X, factor IX and fibrinogen, as potential substrates for enzyme. Cleavage products of peptide hydrolysis were determined by MALDI-TOF MS. The peptide Asn–Asn–Leu–Thr–Arg–Ile–Val–Gly–Gly—factor X fragment was cleaved by enzyme at positions Leu3–Thr4 and Arg5–Ile6. The fibrinogen peptide fragment Glu–Tyr–His–Thr–Glu–Lys–Leu–Val–Thr–Ser was hydrolysed at position Lys6–Leu7.  相似文献   

9.
1. Hemorrhagic toxin was isolated from Agkistrodon bilineatus (Common cantil) venom using a three-step purification procedure to obtain 32.8 mg of purified hemorrhagic toxin from 700 mg of crude venom. 2. The purified toxin was homogeneous by disc polyacrylamide gel electrophoresis at pH 8.3, and by isoelectric focusing. 3. Hemorrhagic toxin possessed lethal, hemorrhagic and proteolytic activities. These activities of this toxin were inhibited by ethylenediaminetetraacetic acid (EDTA) and ethyleneglycol-bis-(beta-aminoethylether)N,N'-tetraacetic acid (EGTA), but not by cysteine or soybean trypsin inhibitor (SBTI). 4. Its molecular weight was approximately 48 kDa and the isoelectric point was 4.2. 5. Purified preparation hydrolyzed the Asn(3)--Gln(4), His(10)--Leu(11), Ala(14)--Leu(15), Tyr(16)--Leu(17), Arg(22)--Gly(23) and Phe(24)--Phe(25) bonds of oxidized insulin B. chain. 6. The A alpha chain of fibrinogen was first split and B beta chain was cleaved later by this toxin. 7. Hemorrhagic toxin contains 1 mol of zinc and 2 mol of calcium per mol of protein.  相似文献   

10.
A Bini  D Wu  J Schnuer  B J Kudryk 《Biochemistry》1999,38(42):13928-13936
Matrix metalloproteinases (MMPs) participate in physiological remodeling of the extracellular matrix. Recently we determined that both fibrinogen (Fg) and cross-linked fibrin (XL-Fb) are substrates for selected MMPs. Specifically, XL-Fb clots were solubilized by MMP-3 (stromelysin 1) by cleavage at gamma Gly 404-Ala 405, resulting in a D-like monomer fragment. Similarly, MMP-7 (matrilysin) and MT1-MMP (membrane type 1 matrix metalloproteinase) solubilized XL-Fb clots. However, the molecular mass of fragment D-dimer, obtained after MMP-7 and MT1-MMP degradation of XL-Fb, is similar to that of fragment D-dimer from plasmin degradation ( approximately 186 kDa). In contrast, fragment D-like monomer, from MMP-3 degradation of both fibrinogen (Fg) and XL-Fb, is similar to fragment D from plasmin degradation of Fg ( approximately 94 kDa). Reduced chains from MMP-3, MMP-7, and MT1-MMP digests of Fg and XL-Fb were subjected to direct sequence analyses and D/D-dimer alpha-chain showed cleavage at both alpha Asp 97-Phe 98 and alpha Asn 102-Asn 103. Degradation of the beta-chain resulted in microheterogeneity of cleavage sites at beta Asp 123-Leu 124, beta Asn 137-Val 138, and beta Glu 141-Tyr 142, whereas all three enzymes cleaved the gamma-chain at gamma Thr 83-Leu 84. In both Fg and XL-Fb, several cleavage sites obtained by proteolysis with MMP-3, MMP-7, and MT1-MMP were found to be in very close proximity to those obtained by plasmin on these same substrates. That does not occur with other MMPs such as MMP-1, -2, and -9 and MT2-MMP. The degradation of XL-Fb by MMPs suggests both plasmin-dependent and independent mechanisms of fibrinolysis that might be relevant in inflammation, angiogenesis, arthritis, and atherosclerosis.  相似文献   

11.
Hemorrhagic proteinase, HTb, isolated from Crotalus atrox (western diamondback rattlesnake) venom was studied for its specificity. HTb showed fibrinogenase activity, hydrolyzing the A alpha chain of fibrinogen first, followed by the cleavage of the B beta chain. HTb is different from thrombin and did not produce a fibrin clot. The degradation products of fibrinogen were found to be different, indicating that the cleavage sites in the A alpha and B beta chains are different from those of thrombin. N-Benzoyl-Phe-Val-Arg-p-nitroanilide was not hydrolyzed by HTb, although this substrate was hydrolyzed by thrombin and reptilase.  相似文献   

12.
A metalloprotease that digests cartilage proteoglycan optimally at pH 5.3 has been purified (4400-fold) to homogeneity from 20-g samples of human articular cartilage containing about 100 micrograms of enzyme. This enzyme was cleanly separated from a related neutral metalloprotease with an optimum pH of 7.2. The acid metalloprotease displays 40% of its maximum activity at pH 7.2 and so has significant activity at physiological pH. The protease is calcium-dependent and indirect evidence suggests that it may contain zinc at its active center. It occurs largely in a latent form that can be activated by aminophenylmercuric acetate. The apparent Mr of the latent form is 55,000 and of the active form, 35,000. The isoelectric point is at pH 4.9. The protease activity is inhibited by chelators, Z-phenylalanine, ovostatin, and tissue inhibitor of metalloproteinase from human articular cartilage. It differs from metalloproteinases such as enkephalinase and kidney brush-border protease in its failure to be strongly inhibited by phosphoramidon and Zincov. It cleaves the proteoglycan monomer of bovine nasal cartilage to fragments of approximately 140,000 Da. It cleaves the B chain of insulin at Ala14-Leu15 and Tyr16-Leu17. A survey of 26 cartilage extracts indicates this enzyme is elevated to about 3 times the normal level in human osteoarthritic cartilage and that the tissue inhibitor of metalloproteinase is only slightly diminished. Preliminary evidence points to the presence of a similar acid metalloprotease activity in human polymorphonuclear leukocytes.  相似文献   

13.
Hemorrhagic toxin f (HT-f) was isolated from Crotalus atrox (Western Diamondback Rattlesnake) venom by a five-step purification procedure. Homogeneity was established by the formation of a single band in acrylamide gel electrophoresis, isoelectric focusing, and sodium dodecyl sulfate (SDS)-electrophoresis. HT-f has a molecular weight of 64,000 and contains 572 amino acid residues. It contains 1 mol of zinc per mol of protein. Zinc is essential for both hemorrhagic and proteolytic activities. HT-f possesses proteolytic activity hydrolyzing the Val-Asn, Gln-His, Leu-Cys, His-Leu, Ala-Leu, and Tyr-Leu bonds of oxidized insulin B chain. HT-f did not coagulate fibrinogen to fibrin, yet it did hydrolyze the gamma chain of fibrinogen without affecting either the A alpha or B beta chains. This is the first time that a hemorrhagic toxin was shown to have fibrinogenase activity. HT-f was shown to differ immunologically from other hemorrhagic toxins such as HT-a and HT-c. HT-f also possesses lethal toxicity. When zinc was removed the apo-HT-f lost its lethal toxicity. HT-f produced not only local hemorrhage in the skin and muscle, but also produced systemic hemorrhage in internal organs such as the intestine, kidney, lung, heart, and liver.  相似文献   

14.
ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan   总被引:9,自引:0,他引:9  
A disintegrin-like and metalloproteinase with thrombospondin type I motifs-1 (ADAMTS-1) is an extracellular matrix-anchored metalloproteinase. In this study we have demonstrated that ADAMTS-1 is able to cleave a major cartilage proteoglycan, aggrecan. N-terminal sequencing analysis of the cleavage product revealed that ADAMTS-1 cleaves the Glu(1871)-Leu(1872) bond within the chondroitin sulfate attachment domain of aggrecan. In addition, deletional analysis demonstrated that the C-terminal spacer region of ADAMTS-1 is necessary to degrade aggrecan. These results suggest that ADAMTS-1 may be involved in the turnover of aggrecan in vivo.  相似文献   

15.
In investigations aimed at characterizing snake venom clot-dissolving enzymes, we have purified a fibrinolytic proteinase from the venom of Bothrops leucurus (white-tailed jararaca). The proteinase was purified to homogeneity by a combination of molecular sieve chromatography on Sephacryl S-200 and ion-exchange chromatography on CM Sepharose. The enzyme called leucurolysin-a (leuc-a), is a 23 kDa metalloendopeptidase since it is inhibited by EDTA. PMSF, a specific serine proteinase inhibitor had no effect on leuc-a activity. The amino acid sequence was established by Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. Leuc-a is related in amino acid sequence to reprolysins. The protein is composed of 200 amino acid residues in a single polypeptide chain, possessing a blocked NH2-terminus and containing no carbohydrate. The proteinase showed proteolytic activity on dimethylcasein and on fibrin (specific activity=21.6 units/mg and 17.5 units/microg, respectively; crude venom=8.0 units/mg and 9.5 units/microg). Leuc-a degrades fibrin and fibrinogen by hydrolysis of the alpha chains. Moreover, the enzyme was capable of cleaving plasma fibronectin but not the basement membrane protein laminin. Leuc-a cleaved the Ala14-Leu15 and Tyr16-Leu17 bonds in oxidized insulin B chain. The pH optimum of the proteolysis of dimethylcasein by leuc-a was about pH 7.0. Antibody raised in rabbit against the purified enzyme reacted with leuc-a and with the crude venom of B. leucurus. In vitro studies revealed that leuc-a dissolves clots made either from purified fibrinogen or from whole blood, and unlike some other venom fibrinolytic metallopeptidases, leuc-a is devoid of hemorrhagic activity when injected (up to 100 microg) subcutaneously into mice.  相似文献   

16.
A membrane proteinase from Pseudomonas aeruginosa, called insulin-cleaving membrane proteinase (ICMP), was located in the outer membrane leaflet of the cell envelope. The enzyme is expressed early in the logarithmic phase parallel to the bacterial growth during growth on peptide rich media. It is located with its active center facing to the outermost side of the cell, because its whole activity could be measured in intact cells. The very labile membrane proteinase was solubilized by non-ionic detergents (Nonidet P-40, Triton X-100) and purified in its amphiphilic form to apparent homogeneity in SDS-PAGE by copper chelate chromatography and two subsequent chromatographic steps on Red-Sepharose CL-4B (yield 58.3%, purification factor 776.3). It consisted of a single polypeptide chain with a molecular mass of 44.6 kDa, determined by mass spectrometry. ICMP was characterized to be a metalloprotease with pH-optimum in the neutral range. The ICMP readily hydrolyzed Glu(13)-Ala(14) and Tyr(16)-Leu(17) bonds in the insulin B-chain. Phe(25)-Tyr(26) and His(10)-Leu(11) were secondary cleavage sites suggesting a primary specificity of the enzyme for hydrophobic or aromatic residues at P'(1)-position. The ICMP differed from elastase, alkaline protease and LasA in its cleavage specificity, inhibition behavior and was immunologically diverse from elastase. The amino acid sequence of internal peptides showed no homologies with the known proteinases. This outer membrane proteinase was capable of specific cleavage of alpha and beta fibrinogen chains. Among the p-nitroanilide substrates tested, substrates of plasminogen activator, complement convertase and kallikrein with arginine residues in the P(1)-subsite were the substrates best accepted, but they were only cleaved at a very low rate.  相似文献   

17.
The enzyme responsible for the metalloproteinase activity which cleaves the Glu143-Leu144 bond of (pro)urokinase has been isolated from the conditioned medium of cultured normal human kidney cells. Using S-Sepharose and Cibacron Blue-agarose chromatography, then C-4 reversed phase high pressure liquid chromatography, a protein of about 20,000 Da was isolated. Through an identical amino-terminal sequence, the protein was shown to be the matrix metalloproteinase previously referred to in the literature as "pump-1" (putative metalloproteinase). When aprotinin was added during the course of the purification, the major species isolated was the zymogen form (28,000 Da) of pump-1. Pump-1 has been shown to efficiently cleave the susceptible bond of both pro-urokinase (single-chain) and active (two-chain) urokinase and thereby produce the corresponding low molecular weight forms. The amino-terminal sequences of the A and B chains of low molecular weight urokinase prepared by action of pump-1 on recombinant high molecular weight urokinase are identical to those of the low molecular weight urokinase isolated from human kidney cell culture. Since the reaction of urokinase with this metalloproteinase results in separation of its serine proteinase region from the domain which mediates binding to the urokinase receptor, it may be of importance in the regulation of the functional activity of the plasminogen activator in cellular processes.  相似文献   

18.
Human neutrophils use the H2O2-myeloperoxidase-chloride system to generate chlorinated oxidants capable of activating metalloproteinase zymogens that hydrolyze not only native and denatured collagens, but also the serine proteinase inhibitor (serpin) alpha 1-proteinase inhibitor (alpha 1 PI). To identify the metalloenzyme that hydrolyzes and inactivates alpha 1 PI, neutrophil releasates were chromatographed over gelatin-Sepharose and divided into fractions containing either progelatinase or procollagenase. The gelatinase-containing fraction cleaved alpha 1 PI in a manner inhibitable by native type V, but not type I, collagen. Conversely, while the collagenase-containing fraction also cleaved alpha 1 PI, this activity was inhibited by type I, but not type V, collagen. Because type I and V collagens are competitive substrates for collagenase and gelatinase, respectively, each of the metalloproteinase zymogens were purified to apparent homogeneity and examined for alpha 1 PI-hydrolytic activities. Both purified gelatinase and collagenase inactivated alpha 1PI by hydrolyzing the serpin within its active-site loop at the Phe352-Leu353 and Pro357-Met358 bonds, albeit with distinct kinetic properties. Furthermore, purified collagenase, but not gelatinase, cleaved a second serpin, alpha 1-antichymotrypsin, by hydrolyzing the Ala362-Leu363 bond within its active-site loop. These data demonstrate that human neutrophils use chlorinated oxidants to activate collagenolytic metalloproteinases whose substrate specificities can be extended to members of the serpin superfamily.  相似文献   

19.
Osteopontin (OPN) is a secreted phosphoprotein shown to function in wound healing, inflammation, and tumor progression. Expression of OPN is often co-localized with members of the matrix metalloproteinase (MMP) family. We report that OPN is a novel substrate for two MMPs, MMP-3 (stromelysin-1) and MMP-7 (matrilysin). Three cleavage sites were identified for MMP-3 in human OPN, and two of those sites were also cleaved by MMP-7. These include hydrolysis of the human Gly166-Leu167, Ala201-Tyr202 (MMP-3 only), and Asp210-Leu211 peptide bonds. Only the N-terminal Gly-Leu cleavage site is conserved in rat OPN (Gly151-Leu152). These sites are distinct from previously reported cleavage sites in OPN for the proteases thrombin or enterokinase. We found evidence for the predicted MMP cleavage fragments of OPN in vitro in tumor cell lines, and in vivo in remodeling tissues such as the postpartum uterus, where OPN and MMPs are co-expressed. Furthermore, cleavage of OPN by MMP-3 or MMP-7 potentiated the function of OPN as an adhesive and migratory stimulus in vitro through cell surface integrins. We predict that interaction of MMPs with OPN at tumor and wound healing sites in vivo may be a mechanism of regulation of OPN bioactivity.  相似文献   

20.
Wang WJ 《Biochimie》2007,89(1):105-115
AAV1, an alkaline glycoprotein (GP), was purified from Agkistrodon acutus venom by two chromatographic steps on successive DEAE-Sephadex A-50 and Superdex 75 FPLC columns. AAV1 on SDS-PAGE under non-reducing conditions migrated as a monomeric and a polymeric forms with apparent molecular mass of 57 and 180 kDa, respectively. Upon reduction, it appeared as a single broad band with a mass of 50.3 kDa corresponding to the size of a typical P-III metalloproteinase acurhagin. The N-terminal sequence of an autoproteolytical 30 kDa-fragment of AAV1 showed a high homology to that of venom proteins with Metalloproteinase, Disintegrin-like, and Cysteine-rich (MDC) domains. Although it was devoid of cleaving activity toward gelatin, fibronectin and prothrombin, AAV1 preferentially digested the Aalpha chain of fibrinogen and followed by the Bbeta chain, leading to the inhibition of fibrinogen-induced platelet aggregation in elastase-treated human platelets. However, the proteolytic activity of AAV1 was completely inactivated by the chelating agent but not serine proteinase inhibitor. Furthermore, AAV1 could concentration-dependently inhibit platelet aggregation and suppress tyrosine phosphorylation of intracellular proteins in collagen- and convulxin-stimulated platelets, respectively. The interaction of MDC domains in AAV1 molecule with platelet GPVI was responsible for the inhibitory effect of AAV1 on collagen- and convulxin-induced platelet aggregation. Taken together, these pieces of evidence suggest that AAV1 from Formosan viper venom belongs to a new member of high-molecular mass metalloproteinase family and functions as a GPVI antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号