首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The plant hormone abscisic acid (ABA) is a key regulator of seed maturation and germination and mediates adaptive responses to environmental stress. In Arabidopsis, the ABI1 gene encodes a member of the 2C class of protein serine/threonine phosphatases (PP2C), and the abi1-1 mutation markedly reduces ABA responsiveness in both seeds and vegetative tissues. However, this mutation is dominant and has been the only mutant allele available for the ABI1 gene. Hence, it remained unclear whether ABI1 contributes to ABA signaling, and in case ABI1 does regulate ABA responsiveness, whether it is a positive or negative regulator of ABA action. In this study, we isolated seven novel alleles of the ABI1 gene as intragenic revertants of the abi1-1 mutant. In contrast to the ABA-resistant abi1-1 mutant, these revertants were more sensitive than the wild type to the inhibition of seed germination and seedling root growth by applied ABA. They also displayed increases in seed dormancy and drought adaptive responses that are indicative of a higher responsiveness to endogenous ABA. The revertant alleles were recessive to the wild-type ABI1 allele in enhancing ABA sensitivity, indicating that this ABA-supersensitive phenotype results from a loss of function in ABI1. The seven suppressor mutations are missense mutations in conserved regions of the PP2C domain of ABI1, and each of the corresponding revertant alleles encodes an ABI1 protein that lacked any detectable PP2C activity in an in vitro enzymatic assay. These results indicate that a loss of ABI1 PP2C activity leads to an enhanced responsiveness to ABA. Thus, the wild-type ABI1 phosphatase is a negative regulator of ABA responses.  相似文献   

7.
8.
Protein phosphatase 2C (PP2C) function in higher plants   总被引:18,自引:0,他引:18  
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.  相似文献   

9.
It is known that the clade A protein phosphatase 2Cs (PP2Cs), including ABI1 and ABI2 and other PP2C members, are key players that function directly downstream of the PYR/PYL/RCAR abscisic acid (ABA) receptors. Here, identification of a crucial site for function of ABI2 protein phosphatase in ABA signalling is reported. It was observed that a calcium-dependent protein kinase (CDPK) phosphorylation site-like motif (CPL) in the ABI2 molecule is required for the interactions of ABI2 with the two members of the ABA receptors PYL5 and PYL9 and with a downstream protein kinase SnRK2.6, and for the catalytic activity of ABI2 in vitro, as well as for the response of ABI2 to the ABA receptors PYL5/PYL9 in relation to the ABA receptor-induced inhibition of the ABI2 phosphatase activity. Further, genetic evidence was provided to demonstrate that this CPL is required for the function of ABI2 to mediate ABA signalling. These data reveal that this CPL is an important site necessary for both the phosphatase activity of ABI2 and the functional interaction between ABI2 and PYL5/9 ABA receptors, providing new information to understand primary events of ABA signal transduction.  相似文献   

10.
We report the cloning of both the cDNA and the corresponding genomic sequence of a new PP2C from Arabidopsis thaliana, named AtP2C-HA (for homology to ABI1/ABI2). The AtP2C-HA cDNA contains an open reading frame of 1536 bp and encodes a putative protein of 511 amino acids with a predicted molecular mass of 55.7 kDa. The AtP2C-HA protein is composed of two domains, a C-terminal PP2C catalytic domain and a N-terminal extension of ca. 180 amino acid residues. The deduced amino acid sequence is 55% and 54% identical to ABI1 and ABI2, respectively. Comparison of the genomic structure of the ABI1, ABI2 and AtP2C-HA genes suggests that they belong to a multigene family. The expression of the AtP2C-HA gene is up-regulated by abscisic acid (ABA) treatment.  相似文献   

11.
The Arabidopsis ABI1 and ABI2 genes encode two protein serine/threonine phosphatases 2C (PP2C). These genes have been originally identified by the dominant mutations abi1--1 and abi2--1, which reduce the plant's responsiveness to the hormone abscisic acid (ABA). However, recessive mutants of ABI1 were recently shown to be supersensitive to ABA, which demonstrated that the ABI1 phosphatase is a negative regulator of ABA signalling. We report here the isolation and characterisation of the first reduction-of-function allele of ABI2, abi2--1R1. The in vitro phosphatase activity of the abi2--1R1 protein is approximately 100-fold lower than that of the wild-type ABI2 protein. Abi2--1R1 plants displayed a wild-type ABA sensitivity. However, doubly mutant plants combining the abi2--1R1 allele and a loss-of-function allele at the ABI1 locus were more responsive to ABA than each of the parental single mutants. These data indicate that the wild-type ABI2 phosphatase is a negative regulator of ABA signalling, and that the ABI1 and ABI2 phosphatases have overlapping roles in controlling ABA action. Measurements of PP2C activity in plant extracts showed that the phosphatase activity of ABI1 and ABI2 increases in response to ABA. These results suggest that ABI1 and ABI2 act in a negative feedback regulatory loop of the ABA signalling pathway.  相似文献   

12.
The phytohormone abscisic acid (ABA) regulates physiologically important developmental processes and stress responses. Previously, we reported on Arabidopsis (Arabidopsis thaliana) L. Heynh. ahg mutants, which are hypersensitive to ABA during germination and early growth. Among them, ABA-hypersensitive germination3 (ahg3) showed the strongest ABA hypersensitivity. In this study, we found that the AHG3 gene is identical to AtPP2CA, which encodes a protein phosphatase 2C (PP2C). Although AtPP2CA has been reported to be involved in the ABA response on the basis of results obtained by reverse-genetics approaches, its physiological relevance in the ABA response has not been clarified yet. We demonstrate in vitro and in vivo that the ahg3-1 missense mutation causes the loss of PP2C activity, providing concrete confirmation that this PP2C functions as a negative regulator in ABA signaling. Furthermore, we compared the effects of disruption mutations of eight structurally related PP2C genes of Arabidopsis, including ABI1, ABI2, HAB1, and HAB2, and found that the disruptant mutant of AHG3/AtPP2CA had the strongest ABA hypersensitivity during germination, but it did not display any significant phenotypes in adult plants. Northern-blot analysis clearly showed that AHG3/AtPP2CA is the most active among those PP2C genes in seeds. These results suggest that AHG3/AtPP2CA plays a major role among PP2Cs in the ABA response in seeds and that the functions of those PP2Cs overlap, but their unique tissue- or development-specific expression confers distinct and indispensable physiological functions in the ABA response.  相似文献   

13.
对植物蛋白磷酸酶2C(PP2C)相关基因在砂梨Pyrus pyrifolia品系休眠进程中的表达进行分析。结果表明,砂梨PP2C相关基因与李属PP2C基因高度同源。在梨花芽休眠过程中不同PP2C基因调控的作用不同, PP2C-37-1、PP2C-37-2、PP2C-51-1、PP2C-24四个基因与内休眠调控有关,而PP2C-78对于内休眠的解除则有明显作用。PP2C蛋白磷酸酶相关基因注释到植物激素信号转导途径显示,ABA受体PYR/PYL蛋白与PP2C蛋白以及SnRK2(蛋白激酶)蛋白形成ABA信号转导的复合物可以作用于转录因子ABF从而调控梨花芽的休眠。  相似文献   

14.
A cDNA clone was selected from a cDNA library constructed using mRNA from ABA-treated Fagus sylvatica L. dormant seeds as a template. The clone is highly expressed in the presence of ABA and tends to disappear in stratified seeds. A search of sequence databases showed that the clone encodes a small GTP-binding protein. By means of in situ hybridization, the mRNA has been located in the apical meristem of the embryonic axis and in the central vascular cylinder. Its possible involvement in growth regulation in the embryonic axis of F. sylvatica is discussed.  相似文献   

15.
16.
J Leung  S Merlot    J Giraudat 《The Plant cell》1997,9(5):759-771
Abscisic acid (ABA) mediates seed maturation and adaptive responses to environmental stress. In Arabidopsis, the ABA-INSENSITIVE1 (ABI1) protein phosphatase 2C is required for proper ABA responsiveness both in seeds and in vegetative tissues. To determine whether the lack of recessive alleles at the corresponding locus could be explained by the existence of redundant genes, we initiated a search for ABI1 homologs. One such homolog turned out to be the ABI2 locus, whose abi2-1 mutation was previously known to decrease ABA sensitivity. Whereas abi1-1 is (semi)dominant, abi2-1 has been described as recessive and maternally controlled at the germination stage. Unexpectedly, the sequence of the abi2-1 mutation showed that it converts Gly-168 to Asp, which is precisely the same amino acid substitution found in abi1-1 and at the coincidental position within the ABI1 phosphatase domain (Gly-180 to Asp). In vitro assays and functional complementation studies in yeast confirmed that the ABI2 protein is an active protein phosphatase 2C and that the abi2-1 mutation reduced phosphatase activity as well as affinity to Mg2+. Although a number of differences between the two mutants in adaptive responses to stress have been reported, quantitative comparisons of other major phenotypes showed that the effects of both abi1-1 and abi2-1 on these processes are nearly indistinguishable. Thus, the homologous ABI1 and ABI2 phosphatases appear to assume partially redundant functions in ABA signaling, which may provide a mechanism to maintain informational homeostasis.  相似文献   

17.
Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6–HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C–SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号