首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The foregut and associated glands of a digenetic trematode, Paragonimus miyazakii, were examined in the forebody by transmission and scanning electron microscopy as well as by light microscopy, and their functional roles were discussed. The foregut is lined with a general tegument without spines and sensory receptors throughout its length, although it consists of the mouth, pharynx, and esophagus. This foregut tegument is regionally and intraregionally modified in appearance, suggesting the performance of auxiliary functions in digestion. This appearance is characterized by long, frequent cytoplasmic extensions of the apical tegument around the middle portion of the mouth and the anterior esophagus. Electron-dense granules and multimembranous and multilamellar bodies are developed in the tegument to various degrees, and elaborately in the apical layer of the prepharynx. A single type of unicellular gland is embedded in the antero-middle part of the worm in small groups. The gland cells synthesize clear secretory granules as a chief product, each granule with a pleomorphic, dense, core-like inclusion. Mature granules are elliptical in shape, approximately 500 nm in diameter, and are subsequently discharged into the prepharyngeal foregut lumen after passing through the elongated cytoplasm of the gland cell. In the prepharynx and pharynx, host blood cells are apparently processed for digestion. In the wide lumen of the esophagus, foodstuff could undergo sufficient digestion prior to absorption by the cecal epithelium. J. Morphol. 237:43–52, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Podvyaznaya I. 2011. An ultrastructural study of alimentary tract development in the cercariae of Prosorhynchoides borealis (Digenea, Bucephalidae). —Acta Zoologica (Stockholm) 92 : 170–178. The development of digestive system in Prosorhynchoides borealis cercariae was studied using transmission electron microscopy. The foregut and caecum primordia arise in early cercarial embryos as two adjoining cellular cords. The primordial pharynx appears as a cluster of myoblasts in the mid‐part of the foregut primordium whose proximal end abuts onto the ventral embryonic tegument. Later, a lumen develops within the gut primordia and their component cells form the embryonic cellular epithelium with an essentially similar structure in the foregut and caecal regions. Subsequently, the foregut epithelial cells merge to form a syncytium. This process proceeds asynchronously and the most proximal foregut area remains cellular for the longest time. The syncytial lining of the foregut establishes syncytial connections with secretory cytons differentiating in the surrounding parenchyma. These cytons produce secretory granules, which are transported through cytoplasmic connections to the foregut syncytium. Before cercariae reach maturity, their foregut epithelium becomes anucleate and continuous with the external tegument. By the end of cercarial development, numerous short lamellae appear on the luminal surface of the caecal epithelium. The caecal cells become involved in secretory activity as indicated by the presence of Golgi‐derived secretory bodies in their cytoplasm.  相似文献   

3.
The gastrointestinal tracts of adult and juvenile Dover sole, Solea solea (L.), were examined using scanning (SEM) and transmission electron microscopy (TEM). SEM showed little differentiation of the internal morphology of the gastrointestinal tract in adult fish, with longitudinally arranged mucosal folds present in all gut regions. Mucosal folds had a similar arrangement to that in the goldfish. Goblet cells were identified in the mucosal epithelium in all regions of the gut while microscopic ducts/pores of possible pancreatic origin were observed in the foregut region. SEM of juvenile gut samples showed a similar arrangement of longitudinal mucosal folds to that found in the adult fish. There was no visible evidence of goblet cells or secretory ducts/pores in any region of the juvenile gastrointestinal tract.
In TEM it was observed that apical microvilli were a feature of epithelial cells from all regions of the gastrointestinal tract in adult and juvenile Dover sole. Cells from the distal regions of the adult and juvenile gut showed invaginations and vacuolation of the apical cytoplasm. A high degree of vacuolation in cells from the juvenile hindgut-rectum indicated the possible occurrence of intracellular digestion of absorbed nutrients in this gut region.  相似文献   

4.
The gut of the mite Acarus siro is characterized on the ultrastructural level. It consists of the foregut (pharynx, esophagus), midgut (ventriculus, caeca, colon, intercolon, postcolonic diverticula, postcolon), and hindgut (anal atrium). The gut wall is formed by a single-layered epithelium; only regenerative cells are located basally and these have no contact with the lumen. Eight cell types form the whole gut: (i) simple epithelial cells forming fore- and hindgut; (ii) cells that probably produce the peritrophic membrane; (iii) regenerative cells occurring in the ventriculus, caeca, colon, and intercolon; (iv) spherite cells and (v) digestive cells forming the ventriculus and caeca; (vi) colonic cells and (vii) intercolonic cells; and (viii) cells forming the walls of postcolonic diverticula and postcolon. Spherite and digestive cells change in structure during secretory cycles, which are described and discussed. The cycle of spherite, colonic, and intercolonic cells is terminated by apoptosis. Ingested food is packed into a food bolus surrounded by a single homogeneous peritrophic membrane formed by addition of lamellae that subsequently fuse together. The postcolonic diverticula serve as a shelter for filamentous bacteria, which also are abundant in the intercolon.  相似文献   

5.
The fine structure of the pharynx and associated valve of the tardigrade Milnesium tardigradum is presented. The pharynx consists of a triradiate, cuticle lined lumen surrounded by radially arranged muscle cells and special apical cells which cap each of the ventricles of the lumen. The valve is an unusual structure marking the anterior limit of the pharynx. It is a specialization of the cuticular lining of the foregut and the apical cells of the pharynx. The significance and phyletic affinities of these structures are discussed.  相似文献   

6.
Summary The fine structure of the pharynx is presented and demonstrates that the pharyngeal epithelial system is a continuous one. The epithelial lining of the pharyngeal cavity with its characteristic fibrous secretory bodies merges with the outer pharyngeal epithelium at the point of anchorage of the pharynx. A few of these cells are insunk, the nuclei occurring beneath the underlying muscular layers. The nature of the outer epithelium changes towards the free end of the pharynx; the cells become ciliated and in contents come to resemble the inner epithelium which it joins at the tip.The gut cells merge at a transitional zone with the inner pharyngeal epithelium and at this point both bear microvilli and contain rod-shaped apical bodies. Some of these cells are also insunk. Towards the mouth the epithelium shows a greater degree of insinking and exhibits microapocrine secretion. Both inner and outer epithelia bear sense receptors which are concentrated at the lip.At the point of pharyngeal insertion, the sub-epithelial tissue resembles planarian parenchyma, but is rich in gland cells. These glands open on to the outer epithelium especially towards the free end of the pharynx.This research was supported by the Scientific Research Council. Grant No. B/RG/086.  相似文献   

7.
The domestic mite species Blomia tropicalis is an important indoor allergen source related to asthma and other allergic diseases in tropical and subtropical regions. Here, we describe the alimentary canal of B. tropicalis with the particular application of three-dimensional reconstruction technology. The alimentary canal of B. tropicalis resembles the typical acarid form consisting of the cuticle-lined foregut and hindgut separated by a cuticle-free midgut. The foregut is divided into a muscular pharynx and an esophagus. The midgut is composed of a central ventriculus, two lateral caeca, a globular colon and a postcolon with two tubiform postcolonic diverticula. The most common cells forming the epithelium of ventriculus and caeca are squamous and cuboidal. The globular cells contain a big central vacuole in the posterior region of the caeca. The epithelium of the colon and postcolon has significantly longer microvilli. The anal atrium is a simple tube with flattened epithelial cells. The spatial measurements of the three-dimensional model suggest that the paired caeca and central ventriculus occupy 55.1 and 34.6%, respectively, of the total volume of the alimentary canal and may play the key role in food digestion. J. Wu and F. Yang contributed equally.  相似文献   

8.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

9.
and 1992. Ultrastructure and histochemistry of the digestive tract of juvenile Paramphistomum epiclitum (Paramphistomidae: Digenea) during migration in Indian ruminants. International Journal for Parasitology 22: 1089–1101. The digestive tract of juvenile Paramphistomum epiclitum consists of a foregut with a highly muscular terminal pharynx and an oesophagus, which leads to a pair of unbranched and blind-ending intestinal caeca. A syncytium lining the foregut is continuous with the external tegument and displays similar sensory papillae and secretory bodies (T1 and T2). A third type of secretory body (T3) is confined to the oesophageal cytons of newly excysted juveniles and is first evident in the syncytium by day 14 of migration. An epithelium lining the caeca is composed of a single layer of morphologically uniform cells whose apical surface is amplified by microvilli. Dense secretions synthesized in the caecal epithelium of mature cercariae are released during migration by a mechanism resembling modified apocrine discharge. The caecal epithelium of migrating juveniles undergoes a 10-fold increase in surface amplification (irrespective of growth) during its transition from a primarily secretory tissue to one apparently specialized for absorption.  相似文献   

10.
Previous studies using immunostaining and light microscopy demonstrated expression of Leishmania major lipophosphoglycan (LPG) on parasites developing in the sandfly gut from 2 days post infection. By days 4 to 7 post infection, there appeared to be large amounts of parasite-free LPG deposited on/in the microvilli and epithelial cells lining the thoracic midgut, while forward migration of parasites and the morphological changes which accompany metacyclogenesis were associated with developmental modification of the LPG molecules. Studies presented here examine this process with much greater precision using electron microscopy and immunogold labeling techniques to study the different developmental forms (nectomonads, haptomonads, paramastigotes, and metacyclics) of promastigotes in the sandfly gut. Results obtained using LPG-specific monoclonal antibodies (WIC79.3, 45D3 and the metacyclic-specific 3F12) show (1) gold labeling over the cell surface, within the flagellar pocket, and extending along the entire length of the flagellum of electron-dense nectomonads observed in the abdominal and thoracic midgut regions on days 4 and 7 post infection, and of electron-lucid haptomonads in the foregut, (2) dense labeling around the flagellar tips, by which nectomonad forms bind to the midgut microvilli, but not on the microvilli themselves or within the epithelial cells lining the midgut, (3) significant metacyclic-specific (3F12) labeling on nectomonad forms in the lumen of the midgut and attached to the microvilli, and (4) dense labeling on the cell surface of electron-lucid paramastigotes in the esophagus and in the filamentous matrix surrounding paramastigote and metacyclic forms in the esophagus and pharynx. These results are discussed in the light of the proposed roles for LPG in parasite attachment to, and survival in, the sandfly gut.  相似文献   

11.
粉尘螨消化系统的形态学观察   总被引:1,自引:0,他引:1  
光镜下观察了粉尘螨Dermatophagoides farinae消化系统结构,其组成包括:口前腔、前肠、中肠、后肠、肛门和唾液腺。口前腔由颚体围绕而成;前肠包括一个肌肉的咽和食道,食道从脑中穿过;中肠分为前中肠(包括一对盲肠)和后中肠,中肠的上皮细胞呈现多种形态; 后肠包括相对大的结肠和狭窄的直肠;消化腺为不规则形,位于脑前方。本文阐述了消化道的分支情况、显微结构及细胞形态。  相似文献   

12.
The anterior alimentary tract of Diclidophora merlangi is composed of a complex series of morphologically distinct epithelia interconnected by septate desmosomes and penetrated by the openings of numerous unicellular glands. The mouth and buccal cavity are lined by an infolding of modified body tegument, distinguished by uniciliate sense receptors, buccal gland openings, and in the buccal region by a dense, spiny appearance. The prepharynx is covered by an irregularly folded epithelium and, for part of its length, by the luminal cytoplasm of the prepharyngeal gland cells. The epithelium is syncytial and pleiomorphic, and regional variation in structure is common. A separate epithelium invests the lips of the pharynx and its free surface is greatly amplified by numerous, dense lamellae of varying dimensions. The lip epithelium is continuous with cytoplasmic processes of cells located external to the pharynx. A further, distinct epithelium borders the pharynx lumen and is composed of discrete cytoplasmic units connected by short septate desmosomes. The oesophagus is lined by a modified caecal epithelium, lacking haematin cells, and, in places, is perforated by the openings of oesophageal gland cells; it is continuous with the syncytial connecting tissue of the gut caeca.  相似文献   

13.
The digestive tract of the freshwater amphipod Hyalella azteca is a straight but differentiated tube consisting of foregut, midgut, and hindgut divisions. The foregut is subdivided into a tubular esophagus, a cardiac stomach, and a pyloric stomach. The cuticular lining of the cardiac stomach is elaborated into a set of food-crushing plates and ossicles, the gastric mill, while the pyloric cuticle forms a complex straining and pressing mechanism. Nine caeca arise from the midgut, seven anteriorly and two posteriorly. Four of the anterior caeca, the hepatopancreatic caeca, are believed to be the primary sites of digestion and absorption. The remaining caeca may be absorptive, secretory, or both. The much-folded hindgut wall is capable of great distention by extrinsic muscle action for water intake to aid in flushing fecal material out of the anus; such action also may stimulate antiperistalsis by intrinsic rectal muscles.  相似文献   

14.
The mouth, pharynx and oesophagus of Calicotyle are lined by syncytial epithelia, and there are numerous unicellular glands associated with the oesophagus. An infolding of unmodified external tegument lines the mouth cavity and is connected by discrete cytoplasmic processes to subjacent perikarya. It contains two types of secretory body and its luminal surface is invested with a finely filamentous coating. The pharynx and oesophagus are lined by irregularly-folded epithelia that are interconnected by a septate desmosome. Membranous inclusions distinguish the pharynx epithelium and there is a well developed basal lamina for insertion of the pharyngeal muscles. The oesophagus epithelium is perforated by the openings of the oesophageal glands. These lie in the surrounding parenchyma and produce a dense, membrane-bound secretion which is conveyed by duct-like extensions of the glands to the oesophagus lumen. The ducts are supported in places by microtubules and are anchored to the oesophageal epithelium by septate desmosomes. A septate desmosome also marks the junction between the epithelium and the gut caeca.  相似文献   

15.
Five regions are recognized in the accessory glands of the Mediterranean flour moth, Anagasta kuehniella (Zeller), on the basis of cellular morphology and aggregates of secretory material in the lumen. Some variation is found in each of the posterior four regions, especially the third one. In the most anterior region (region 1) the epithelium is composed of a single type of cell, while in each of the other regions there are two classes of cells. The cells of region 1 and one class in each of the other four regions are fairly typical exocrine cells with extensive rough endoplasmic reticula. Secretion is primarily via Golgi-derived vesicles. Apocrine secretion in the form of sloughing off of the apical cytoplasm probably also occurs in all regions but is most prominent in the posterior two regions. One class of cells is very similar in morphology in each of the posterior four regions though their secretory products form characteristic aggregates in the lumen. The second class of cells (foliate cells) occurring in the posterior four segments is most notably characterized by elongate apical projections that extend out into the lumen. The apical projections contain large quantities of glycogen, some microtubules, and, in some cases, many minute mitochondria. The membrane content of the projections is also very high. In the anterior regions, the membranes are mostly fused in pairs and typically form multilayered whorls. Fusion and whorl formation decrease in the posterior regions. The cytoplasm of the foliate cells has a high organelle content including many lysosomes and mitochondria. The latter exhibit considerable polymorphism, with particular forms occurring in the different regions of the glands. The apical projections of the foliate cells are detached during copulation, presumably as the result of nervous stimulation, and become a part of the ejaculate. Replenishment of all secretory material, including the apical projections, occurs after copulation.  相似文献   

16.
太白蝎蛉消化道形态学与组织学研究   总被引:1,自引:0,他引:1  
刘书宇  花保祯 《昆虫学报》2009,52(7):808-813
利用光学显微镜和扫描电子显微镜, 在形态学和组织学水平上研究了太白蝎蛉Panorpa obtusa Cheng成虫消化道的结构。结果表明: 蝎蛉消化道由前肠、中肠、和后肠组成。前肠包括咽喉、食道、和前胃, 但没有嗉囊,其中咽喉可分为骨化的前咽和附着扩肌的后咽(咽喉唧筒); 前胃壁很厚,内膜上长有许多排列整齐、紧密的棕色胃刺,司过滤、暂时储存和磨碎食物的功能; 前肠末端有6个贲门瓣伸入中肠。中肠较长且膨大,其肠壁细胞由柱状细胞和再生细胞组成; 肠壁细胞外分别为环肌和纵肌,无胃盲囊,也未观察到围食膜。6根棕红色的马氏管位于中、 后肠分界处。后肠分为不对称的“V”字型回肠、环状结肠、以及膨大透明的直肠, 直肠内壁上有6个交替排列的直肠垫。最后简要讨论了蝎蛉消化道的结构与功能,及其在蝎蛉科昆虫分类中的意义。  相似文献   

17.
John S. Peel 《Palaeontology》2017,60(6):795-805
Singuuriqia simoni gen. et sp. nov. represents the first record of a priapulid worm from the Sirius Passet Lagerstätte (Cambrian Series 2, Stage 3) of North Greenland (Laurentia). It is defined by an unusually broad, longitudinally folded, foregut which tapers through the pharynx towards the anterior mouth; posteriorly, the same longitudinal folding is evident in the narrow gut. The slender, smooth, trunk in the unique specimen passes anteriorly into an oval proboscis which culminates in a smooth, extensible, pharynx with pharyngeal teeth. The capacity for substantial expansion of the foregut permitted rapid ingestion of food prior to digestion at leisure. Cololites suggest both carnivorous and deposit feeding behaviour, indicating that Singuuriqia, like the present day Priapulus, was probably omnivorous.  相似文献   

18.
The microspines of the cockroach foregut were investigated in order to determine their fine structure, variation, patterns of distribution, and possible functions. The following were studied: Blaberidae (4 species), Blatellidae (3 species), Blattidae (2 species), and Cryptocercidae (one species). Elongate microspines (over 30 μm), usually several attached to a basal plate, were found in the buccal cavity and anterior and posterior pharynx of blaberids and blattids, whereas moderate (15–20 μm) to short (1–5 μm) microospines were found in 2 regions in the blattellid and cryptocercid cockroaches. Short microspines (1–5 gmm) individually attached to a basal plate occurred in the esophagus, crop, proventriculus and stomodeal valve regions in all families studied. Microspines appear to be useful in understanding systematics and evolution of cockroaches. The possible role of elongate microspines in retaining food particles during regurgitation behavior is postulated.  相似文献   

19.
The midgut of Rhynchosciara americana larvae consists of a cylindrical ventriculus from which protrudes two gastric caeca formed by polyhedral cells with microvilli covering their apical faces. The basal plasma membrane of these cells is infolded and displays associated mitochondria which are, nevertheless, more conspicuous in the apical cytoplasm. The anterior ventricular cells possess elaborate mitochondria-associated basal plasma membrane infoldings extending almost to the tips of the cells, and small microvilli disposed in the cell apexes. Distal posterior ventricular cells with long apical microvilli are grouped into major epithelial foldings forming multicellular crypts. In these cells the majority of the mitochondria are dispersed in the apical cytoplasm, minor amounts being associated with moderately-developed basal plasma membrane infoldings. The proximal posterior ventriculus represents a transition region between the anterior ventriculus and the distal posterior ventriculus. The resemblance between the gastric caeca and distal posterior ventricular cells is stressed by the finding that their microvilli preparations display similar alkaline phosphatase-specific activities. The results lend support to the proposal, based mainly on previous data on enzyme excretion rates, that the endo-ectoperitrophic circulation of digestive enzymes is a consequence of fluid fluxes caused by the transport of water into the first two thirds of midgut lumen, and its transference back to the haemolymph in the gastric caeca and in the distal posterior ventriculus.  相似文献   

20.
Summary The columnar cells in regions 3 and 4 of the ductus epididymidis in rabbits display ultrastructural features characteristic of absorbing cells. The stereocilia show basal anastomoses and often a fibrillar core continuous with a fibrillar web in the apical cytoplasm. Numerous invaginations of the slightly downy apical cell membrane and many thick-walled apical vesicles and vacuoles contain an opaque substance similar to that seen in the lumen. The vacuoles often contain small vesicles or bodies, probably formed from the vacuolar wall by budding. Numerous bodies or vacuoles with moderately dense contents are seen in the Golgi area and in the supranuclear and intranuclear cytoplasm in region 3. In region 4 they are denser and mainly seen above the nucleus. A high acid phosphatase activity was demonstrated in most dense and some light bodies. India ink introduced by way of the rete testis was taken up from the lumen into apical invaginations, vesicles and vacuoles and slowly transferred to denser bodies below the Golgi apparatus.These observations are interpreted as evidence for a resorption of substances from the lumen by a pinocytotic process, and for their storage and perhaps digestion in the dense bodies, which appear to have a lysosomal character. The Golgi apparatus is large with many vesicles of two types and empty cisternae but few typical Golgi vacuoles. The partly granular endoplasmic reticulum is very well developed and has opaque contents. Microtubules run from the terminal bar region into the Golgi area. Thick-walled vesicles occur throughout the cytoplasm, sometimes in continuity with the cell membrane. The basal parts of the cell borders often interdigitate.Supported by a grant from the Swedish State Medical Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号