首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
细胞色素C和含心磷脂的人工脂膜相互作用   总被引:1,自引:0,他引:1  
程伯基  董玉枝 《生物化学杂志》1990,6(4):362-366,361
  相似文献   

2.
心磷脂引起细胞色素C的氧化   总被引:1,自引:0,他引:1  
心磷脂—细胞色素C—细胞色素C氧化酶体系吸收光谱的研究发现:心磷脂与氧化态细胞色素C结合产生230nm吸收峰;心磷脂与还原态细胞色素C作用,230nm吸收值上升,550nm吸收值下降,表明心磷脂可以引起细胞色素C的氧化。  相似文献   

3.
4.
5.
心磷脂—细胞色素C体系CD谱的研究   总被引:1,自引:0,他引:1  
  相似文献   

6.
本工作采用FT-IR和NMR技术,研究了心磷脂(CL)与还原态细胞色素C作用后其脂肪酸链中双键数目的变化。发现伴随细胞色素C的氧化,CL双键被部分还原为单键,提示CL可能直接参与吸呼链的电子传递。  相似文献   

7.
 用胆酸盐透析法将猪心线粒体细胞色素C氧化酶重组在含心磷脂和二肉豆寇磷脂酰胆碱的脂质体上,以还原态细胞色素C作为酶反应底物,记录脂酶体囊泡外介质液pH的变化,pH下降幅度可以反映细胞色素C氧化酶质子泵的功能。 心磷脂含量不同的细胞色素C氧化酶脂酶体质子泵功能不同。心磷脂含量在10%—40%(w/w)范围内,随心磷脂含量增高,该酶质子泵功能增强;当心磷艏含量超过50%时,该酶质子泵功能却随心磷脂含量的增加表现出下降的趋势。阿霉素可以与心磷脂紧密结合,抑制细胞色素C氧化酶的质子泵功能。然而,少量阿霉素却能增强含70%心磷脂的脂酶体的质子泵功能。  相似文献   

8.
 线粒体内膜中含有特异的心磷脂是细胞色素C氧化酶活性的必需脂。本工作测定了心磷脂脂质体对细胞色素C溶液园二色(CD)谱的影响,发现心磷脂可引起血色素铁的氧化,并使其轴向配位场强的对称性下降。提示心磷脂可能参与酶和底物之间的电子转移过程。  相似文献   

9.
分别于514.5nm及604um波长激发下,对游离的细胞色素C,细胞色素氧化酶以及细胞色素C和细胞色素氧化酶的复合体的共振拉曼光谱进行了分析比较,在形成复合体时,双方蛋白的共振拉曼谱均有所变化,一个共同的特征性变化是A2gv221130cm-1,v211312cm-1,v201400cm-2,和v191584cm-1强度都有增强,其中变化最明显的是A2gv191584cm-1峰,在游离态中,I1540/i1582>1,在结合态中I1550/I1582<1。  相似文献   

10.
磷脂对琥珀酸—细胞素c还原酶的作用   总被引:2,自引:0,他引:2  
  相似文献   

11.
Factors influencing the release and anchorage of cytochrome c to the inner membrane of brain mitochondria have been investigated. Metabolic activity of mitochondria caused a decrease in the membrane potential Δψm, accompanied by detachment of the protein from the inner membrane. In a model system of cytochrome c reconstituted in cardiolipin (CL) liposomes, phosphate was used to breach the hydrophilic lipid-protein interactions. About 44% cytochrome c was removable when heart CL (80% 18:2n-6) was employed, whereas the remaining protein accounted for the tightly bound conformation characterized by hydrophobic lipid-protein interactions. Cytochrome c release from brain CL liposomes was higher compared to heart CL, consistent with lower polyunsaturated fatty acid content. The release was even higher with CL extracted from metabolically stressed mitochondria, exhibiting more saturated fatty acid profile compared to control (30% vs.17%). Therefore, weakening of the hydrophobic interactions due to saturation of CL may account for the observed cytochrome c release from mitochondria following metabolic stress. Moreover, mitochondria enriched with polyunsaturated CL exhibited higher Δψm, compared to less unsaturated species, suggesting that CL fatty acid composition influences Δψm. Mitochondria incorporated exogenous cytochrome c without protease-sensitive factors or Δψm. The internalized protein anchored to the inner membrane without producing swelling, as monitored by forward and side light scattering, but produced Δψm consumption, suggesting recovery of respiratory activity. The Δψm decrease is ascribed to a selected mitochondrial population containing the incorporated cytochrome c.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

12.
We have compared the properties of two N-acyl derivatives of dilauryl phosphatidylethanolamine on lipid polymorphism, vesicle leakage and Sendai virus fusion. The derivatives contained either an N-lauroyl group (NLPE) or an N-acetyl group (NAcPE). Only the NAcPE markedly affected the bilayer to hexagonal transition temperature of dielaidoyl phosphatidylethanolamine, shifting it to higher values. In contrast the NLPE slightly lowered this phase transition temperature. The two lipids also have opposite effects on leakage from small unilamellar vesicles of egg phosphatidylcholine. The NLPE inhibits leakage, while the NAcPE promotes it. This vesicle stabilizing effect of NLPE against leakage is not manifested in alterations of rates or extents of Sendai virus fusion to liposomes of egg phosphatidylethanolamine plus 2% ganglioside GD1a. The NLPE has no effect, while the NAcPE reduces the observed fusion, at least in part as a consequence of a reduction in the final extent of fusion. These results demonstrate that the bilayer stabilizing effects of NLPE do not result in a lower rate of viral fusion. Furthermore, these bilayer stabilizing effects against leakage are not solely a function of the lipid headgroup but also require a structure with three long acyl chains. The reduced leakage is not related to a loss in monolayer curvature strain.  相似文献   

13.
Cardiolipin (CL), a unique mitochondrial phospholipid synthesized by CL synthase (CLS), plays important, yet not fully understood, roles in mitochondria-dependent apoptosis. We manipulated CL levels in HeLa cells by knocking down CLS using RNA interference and selected a clone of CL-deficient cells with ~ 45% of its normal content. ESI–MS analysis showed that the CL molecular species were the same in CL-deficient and CL-sufficient cells. CL deficiency did not change mitochondrial functions (membrane potential, reactive oxygen species generation, cellular ATP levels) but conferred resistance to apoptosis induced by actinomycin D (ActD), rotenone, or γ-irradiation. During ActD-induced apoptosis, decreased CL peroxidation along with suppressed cytochrome (cyt) c release was observed in CL-deficient cells, whereas Bax translocation to mitochondria remained similar to that in CL-sufficient HeLa cells. The amounts of loosely bound cyt c (releasable under high ionic strength conditions) were the same in CL-deficient and CL-sufficient cells. Given that CL peroxidation during apoptosis is catalyzed by CL/cyt c complexes and CL oxidation products are essential for cyt c release from mitochondria, our results suggest that CL deficiency prevents adequate assembly of productive CL/cyt c complexes and CL peroxidation, resulting in increased resistance to apoptosis.  相似文献   

14.
Cytochrome P450 reductase (CPR) is a diflavin enzyme that transfers electrons to many protein partners. Electron transfer from CPR to cyt c has been extensively used as a model reaction to assess the redox activity of CPR. CPR is composed of multiple domains, among which the FMN binding domain (FBD) is the direct electron donor to cyt c. Here, electron transfer and complex formation between FBD and cyt c are investigated. Electron transfer from FBD to cyt c occurs at distinct rates that are dependent on the redox states of FBD. When compared with full-length CPR, FBD reduces cyt c at a higher rate in both the semiquinone and hydroquinone states. The NMR titration experiments reveal the formation of dynamic complexes between FBD and cyt c on a fast exchange time scale. Chemical shift mapping identified residues of FBD involved in the binding interface with cyt c, most of which are located in proximity to the solvent-exposed edge of the FMN cofactor along with other residues distributed around the surface of FBD. The structural model of the FBD-cyt c complex indicates two possible orientations of complex formation. The major complex structure shows a salt bridge formation between Glu-213/Glu-214 of FBD and Lys-87 of cyt c, which may be essential for the formation of the complex, and a predicted electron transfer pathway mediated by Lys-13 of cyt c. The findings provide insights into the function of CPR and CPR-cyt c interaction on a structural basis.  相似文献   

15.
Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the b-heme was determined by optical titration (Em + 234 ± 10 mV). A profile of periplasmic c-type cytochromes expressed in T. selenatis under selenate respiring conditions was undertaken. Two c-type cytochromes were purified (∼24 and ∼6 kDa), and the 24-kDa protein (cytc-Ts4) was shown to donate electrons to SerABC in vitro. Protein sequence of cytc-Ts4 was obtained by N-terminal sequencing and liquid chromatography-tandem mass spectrometry analysis, and based upon sequence similarities, was assigned as a member of cytochrome c4 family. Redox potentiometry, combined with UV-visible spectroscopy, showed that cytc-Ts4 is a diheme cytochrome with a redox potential of +282 ± 10 mV, and both hemes are predicted to have His-Met ligation. To identify the membrane-bound electron donors to cytc-Ts4, growth of T. selenatis in the presence of respiratory inhibitors was monitored. The specific quinol-cytochrome c oxidoreductase (QCR) inhibitors myxothiazol and antimycin A partially inhibited selenate respiration, demonstrating that some electron flux is via the QCR. Electron transfer via a QCR and a diheme cytochrome c4 is a novel route for a member of the DMSO reductase family of molybdoenzymes.  相似文献   

16.
Nanodiscs are self-assembled ∼50-nm2 patches of lipid bilayers stabilized by amphipathic belt proteins. We demonstrate that a well ordered dense film of nanodiscs serves for non-destructive, label-free studies of isolated membrane proteins in a native like environment using neutron reflectometry (NR). This method exceeds studies of membrane proteins in vesicle or supported lipid bilayer because membrane proteins can be selectively adsorbed with controlled orientation. As a proof of concept, the mechanism of action of the membrane-anchored cytochrome P450 reductase (POR) is studied here. This enzyme is responsible for catalyzing the transfer of electrons from NADPH to cytochrome P450s and thus is a key enzyme in the biosynthesis of numerous primary and secondary metabolites in plants. Neutron reflectometry shows a coexistence of two different POR conformations, a compact and an extended form with a thickness of 44 and 79 Å, respectively. Upon complete reduction by NADPH, the conformational equilibrium shifts toward the compact form protecting the reduced FMN cofactor from engaging in unspecific electron transfer reaction.  相似文献   

17.
系统地研究了细胞色素c在多种氨基酸和多肽修饰电极上的电化学反应。并对影响加速细胞色素c电化学反应的因素进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号