首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to their well-studied ability to transactivate the expression of many genes, estrogen receptors (ERs) also effect cytoplasmic changes occurring too quickly to be accounted for by gene expression. Indeed, these immediate, "nongenomic" effects have been intensely studied, but the identification of important protein partners in quick ER-mediated signaling has lagged behind. Now, Wong et al. have identified MNAR (modulator of nongenomic activity of estrogen receptor) as an adaptor protein that allows the ER to bridge the signaling pathways of tyrosine kinases (i.e., Src) and the mitogen-activated protein kinase (MAPK) cascade. The MNAR-ER complex also appears to positively influence ER-mediated gene expression.  相似文献   

2.
Characterization of MNAR expression   总被引:5,自引:0,他引:5  
We have previously demonstrated that modulator of nongenomic action of estrogen receptor (MNAR) integrates action of estrogen receptor alpha (ERalpha), and potentially some other nuclear receptors (NRs), in regulation of Src/Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathway. MNAR is a scaffolding protein that contains 10 LXXLL type motifs that can interact with NRs and 3 PXXP type motifs that can bind to SH3 domains present in kinases and other signaling molecules. Formation of ER-MNAR-cSrc complex leads to activation of Src and downstream Ras/Raf/MAPK pathway. The goal for this study was to compare MNAR expression in various cell lines, to optimize methods that can be used to manipulate its expression and to evaluate MNAR cellular distribution. We found that MNAR is differentially expressed. The highest levels of its expression were found in fast proliferating cells, such as breast adenocarcinoma (MCF-7)-, T cell lymphoma (Jurkat)-, prostate carcinoma (LNCaP)- and osteosarcoma (SaOS2)-derived cell lines. MNAR was undetectable in African green monkey kidney cells (COS-7) and Chinese hamster ovary cells (CHO-K1). We established and optimized a protocol to knockdown MNAR using siRNA and to overexpress it in MCF-7 cells. Exogenously expressed MNAR was found in both cytoplasmic and nuclear fractions, the majority of MNAR, however, was found in the cytoplasmic fraction. Presence of MNAR in the cell nucleus indicates that it may play a role in regulation of gene expression.  相似文献   

3.
Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ERalpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ERalpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.  相似文献   

4.
5.
Estrogen plays an important role during differentiation of midbrain dopaminergic neurons. This is indicated by the presence of estrogen receptors and the transient expression of the estrogen-forming enzyme aromatase within the dopaminergic cell groups. We have previously shown that estrogen regulates the plasticity of dopamine cells through the stimulation of neurite growth/arborization. In this study, we have analyzed the capability of estrogen to influence the activity of developing mouse dopamine neurons. The expression of tyrosine hydroxylase (TH) was assessed by competitive RT-PCR and Western blotting. The developmental expression of TH in the ventral midbrain was studied from embryonic day 15 until postnatal day 15 and revealed highest TH levels early postnatally. This profile coincides with the transient aromatase expression in this brain area. Using cultured midbrain cells, we found that estrogen increased TH mRNA/protein levels. The application of the estrogen receptor antagonist ICI 182,780 resulted in a complete inhibition of estrogen effects. To verify these data in vivo, fetuses were exposed in utero from E15 until birth to the aromatase inhibitor CGS 16949A or to CGS supplemented with estrogen. CGS caused a robust reduction in TH mRNA/protein levels in the midbrain, which could be restored by estrogen substitution. Taken together, our data strongly suggest that estrogen controls dopamine synthesis in the developing nigrostriatal dopaminergic system and support the concept that estrogen is implicated in the regulation of ontogenetic steps but also in the function of midbrain dopamine neurons.  相似文献   

6.
Estrogens play a critical role in the regulation of cellular proliferation, differentiation, and apoptosis. Evidence indicates that this regulation is mediated by a complex interface of direct control of gene expression (so-called "genomic action") and by regulation of cell-signaling/phosphorylation cascades (referred to as the "non-genomic", or "extranuclear" action). However, the mechanisms of the non-genomic action of estrogens are not well defined. We have recently described the identification of a novel scaffold protein termed MNAR (modulator of non-genomic action of estrogen receptor), that couples conventional steroid receptors with extranuclear signal transduction pathways, thus potentially providing additional and tissue- or cell-specific level of steroid hormone regulation of cell functions. We have demonstrated that the MNAR is required for ER alpha (ERa) interaction with p60(src) (Src), which leads to activation of Src/MAPK pathway. Our new data also suggest that activation of cSrc in response to E2 leads to MNAR phosphorylation, interaction with p85, and activation of the PI3 and Akt kinases. These data therefore suggest that MNAR acts as an important scaffold that integrates ERa action in regulation of important signaling pathways. ERa non-genomic action has been suggested to play a key role in estrogen-induced cardio-, neuro-, and osteo-protection. Therefore, evaluation of the molecular crosstalk between MNAR and ERa may lead to development of functionally selective ER modulators that can separate between beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS and the "detrimental", proliferative effects in reproductive tissues and organs.  相似文献   

7.
8.
9.
10.
11.
Both estrogen and leptin play an important role in the regulation of physiological processes of endochondral bone formation in linear growth. Estrogen receptors (ERα and ERβ) are known as members of the superfamily of nuclear steroid hormone receptors and are detected in all zones of growth plate chondrocytes. They can be regulated in a ligand-independent manner. Whether leptin regulates ERs in the growth plate is still not clear. To explore this issue, chondrogenic ATDC5 cells were used in the present study. Messenger RNA and protein analyses were performed by quantitative PCR and Western blotting. We found that both ERα and ERβ were dynamically expressed during the ATDC5 cell differentiation for 21 days. Leptin (50 ng/ml) significantly upregulated ERα and ERβ mRNA and protein levels 48 h after leptin stimulation (P<0.05) at day 14. The up-regulation of ERα and ERβ mRNA by leptin was shown in a dose-dependent manner, but the most effective dose of leptin was different (100 and 1,000 ng/ml, respectively). Furthermore, we confirmed that leptin augmented the phosphorylation of ERK1/2 in a time-dependent manner. A maximum eightfold change was observed at 15 min. Finally, a specific ERK1/2 inhibitor, UO126, blocked leptin-induced ERs regulation in ATDC5 cells, indicating that ERK1/2 mediates, partly, the effects of leptin on ERs. These data demonstrate, for the first time, that leptin regulates the expression of ERs in growth plate chondrocytes via ERK signaling pathway, thereby suggesting a crosstalk between leptin and estrogen receptors in the regulation of bone formation.  相似文献   

12.
13.
14.
2,2-Bis(4-hydroxyphenyl)propane (bisphenol A; BPA) is an environmental endocrine-disrupting chemical. It mimics the effects of estrogen at multiple levels by activating estrogen receptors (ERs); however, BPA also affects the proliferation of human breast cancer cells independent of ERs. Although BPA inhibits progesterone (P4) signaling, the toxicological significance of its effects remain unknown. Tripartite motif-containing 22 (TRIM22) has been identified as a P4-responsive and apoptosis-related gene. Nevertheless, it has not yet been established whether exogenous chemicals change TRIM22 gene levels. Therefore, the present study investigated the effects of BPA on P4 signaling and TRIM22 and TP53 expression in human breast carcinoma MCF-7 cells. In MCF-7 cells incubated with various concentrations of P4, TRIM22 messenger RNA (mRNA) levels increased in a dose-dependent manner. P4 induced apoptosis and decreased viability in MCF-7 cells. The knockdown of TRIM22 abolished P4-induced decreases in cell viability and P4-induced apoptosis. P4 increased TP53 mRNA expression and p53 knockdown decrease the basal level of TRIM22 and P4 increased TRIM22 mRNA expression independent of p53 expression. BPA attenuated P4-induced increases in the ratio of cell apoptosis in a concentration-dependent manner, and the P4-induced decreases in cell viability was abolished in the presence of 100 nM and higher BPA concentrations. Furthermore, BPA inhibited P4-induced TRIM22 and TP53 expression. In conclusion, BPA inhibited P4-induced apoptosis in MCF-7 cells via the inhibition of P4 receptor transactivation. TRIM22 gene has potential as a biomarker for investigating the disruption of P4 signaling by chemicals.  相似文献   

15.
The developing uterus, vagina, and cervix of mice whose age ranged from 16 days of gestation to 90 days postnatal were examined for nuclear estrogen receptors (ERs) by autoradiographic and whole cell uptake techniques. ERs were present within mesenchymal cells of these organs throughout the entire period of development and maturation. By contrast, nuclear ER first became detectable by autoradiography in the epithelium of vagina and uterus at 5 and 6 days postnatal, respectively.
As a result of administration of the synthetic estrogen, diethylstilbestrol (DES), consecutively from 16 to 18 days of gestation, uterine and vaginal epithelial cell height was increased and epithelial secretory activity was elevated during the first 48 hr of postnatal life. Also, a single does of DES administered on the 2nd day after birth stimulated epithelial proliferation in the uterus as determined by 3H-thymidine incorporation. These typical estrogenic effects occurred in the absence of nuclear ER within the epithelium. Prenatal DES treatment accelerated the onset of ER activity within the epithelium by 2 to 3 days relative to controls. The possibility that certain effects of estrogen on epithelial differentiation may be mediated indirectly via ER positive mesenchymal cells is discussed.  相似文献   

16.
We studied estrogen effects on osteoclastic differentiation using RAW264.7, a murine monocytic cell line. Differentiation, in response to RANKL and colony-stimulating factor 1, was evaluated while varying estrogen receptor (ER) stimulation by estradiol or nonsteroidal ER agonists was performed. The RAW264.7 cells were found to express ERalpha but not ERbeta. In contrast to RANKL, which decreased ERalpha expression and induced osteoclast differentiation, 10 nm estradiol, 3 microm genistein, or 3 microm daidzein all increased ERalpha expression, stimulated cell proliferation, and decreased multinucleation, with the effects of estrogen > or = daidzein > genistein. However, no estrogen agonist reduced RANKL stimulation of osteoclast differentiation markers or its down-regulation of ERalpha expression by more than approximately 50%. Genistein is also an Src kinase antagonist in vitro, but it did not decrease Src phosphorylation in RAW264.7 cells relative to other estrogen agonists. However, both phytoestrogens and estrogen inhibited RANKL-induced IkappaB degradation and NF-kappaB nuclear localization with the same relative potency as seen in proliferation and differentiation assays. This study demonstrates, for the first time, the direct effects of estrogen on osteoclast precursor differentiation and shows that, in addition to effecting osteoblasts, estrogen may protect bone by reducing osteoclast production. Genistein, which activates ERs selectively, inhibited osteoclastogenesis less effectively than the nonselective phytoestrogen daidzein, which effectively reproduced effects of estrogen.  相似文献   

17.
18.
Brain-derived neurotrophic factor (BDNF) mRNA expression was studied in the hippocampus at various developmental stages in normal rats and following kainic acid (KA)-induced seizure activity. Systemic administration of KA strongly elevated BDNF mRNA levels in all hippocampal subregions after postnatal day 21. In contrast, even though KA induced intense behavioral seizure activity at postnatal day 8, the seizures were not associated with elevations of BDNF mRNA levels, indicating a clear dissociation between behavioral seizures and increases in BDNF mRNA levels and contradicting the view that BDNF mRNA expression is principally regulated by neuronal activity. In the dentate gyrus at postnatal day 13, intense BDNF mRNA expression was limited to a defined area at the border between granule cell and molecular layers, suggesting the possibility that segregation of BDNF mRNA into defined subcellular compartments may play a role in establishing the well-delineated patterns of innervation in the hippocampus.  相似文献   

19.
Variations in sex steroids bioavailability were linked to the gender difference in the growth of thyroid glands of neonatal rats. In the present study we tested androgen receptor (AR) and estrogen receptor (ER) concentrations by ligand binding assay, and expression of their genes by RT-PCR and Western blot in the thyroid glands of neonatal rats. AR concentration remained elevated from postnatal day (PND) 10 onwards in males, whereas it decreased by PND 20 in females. AR mRNA and protein expressions were higher in males than females, which increased by PND 10, decreased after PND 15 and reached the nadir by PND 20. ER concentration increased by PND 10 and decreased thereafter in both sex. ERα mRNA expression diminished by PND 15 in both sex; while ERβ mRNA decreased by PND 15 to reach the nadir by PND 20 in males, it was augmented by PND 10 in females to reach the peak by PND 15 and diminished by PND 20. ERα protein expression increased by PND 10 and remained elevated till PND 20 in both sex. ERβ protein expression in males increased by PND 10 and decreased by PND 20, while it remained static up to PND 15 and decreased in females. Testosterone stimulated [3H]-thymidine uptake and the expression of IGF-1 and NIS genes in thyrocytes of both sex in vitro, while estradiol stimulated them in females but not in males. We conclude that androgens influence the growth and differentiation of thyrocytes through augmented expression of AR, IGF-1 and NIS in either sex, whereas estrogen imparts the gender difference, which may be at a level beyond the expression of ERs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号