共查询到20条相似文献,搜索用时 10 毫秒
1.
Kristen M. Reifel Michael P. McCoy Tonie E. Rocke Mary Ann Tiffany Stuart H. Hurlbert D. John Faulkner 《Hydrobiologia》2002,473(1-3):275-292
In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310000 cells ml–1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110000 cells ml–1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270000 cells ml–1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (<10% mortality across all concentrations) of activity in the brine shrimp lethality assay and were not considered toxic. All sample extracts tested in the mouse bioassay showed no activity. One sample extract taken from the bloom of the small dinoflagellate was highly active (100% mortality across all concentrations) in the brine shrimp lethality assay, but the active material could not be isolated. While dense algal blooms are common at the Salton Sea, no evidence gathered in this study suggests that algal toxins are present within phytoplankton cells; however, toxins actively excreted by cells may have been missed. Blooms of phytoplankton likely contribute to wildlife mortality at the Salton Sea. Possible mechanisms including intoxication due to ingestion of feathers in grebes and waterlogging caused by changes in surface tension are discussed. 相似文献
2.
The Salton Sea, California's largest inland water body, is an athalassic saline lake with an invertebrate fauna dominated by marine species. The distribution and seasonal dynamics of the benthic macroinvertebrate populations of the Salton Sea were investigated during 1999 in the first survey of the benthos since 1956. Invertebrates were sampled from sediments at depths of 2–12 m, shallow water rocky substrates, and littoral barnacle shell substrates. The macroinvertebrates of the Salton Sea consist of a few invasive, euryhaline species, several of which thrive on different substrates. The principal infaunal organisms are the polychaetes Neanthes succinea Frey & Leuckart and Streblospio benedicti Webster, and the oligochaetes Thalassodrilides gurwitschi Cook, T. belli Hrabe, and an enchytraeid. All but Neanthes are new records for the Sea. Benthic crustacean species are the amphipods Gammarus mucronatus Say, Corophium louisianum Shoemaker, and the barnacle Balanus amphitrite Darwin. Neanthes succinea is the dominant infaunal species on the Sea bottom at depths of 2–12 m. Area-weighted estimates of N. succinea standing stock in September and November 1999 were two orders of magnitude lower than biomass estimated in the same months in 1956. During 1999, population density varied spatially and temporally. Abundance declined greatly in offshore sediments at depths >2 m during spring and summer due to decreasing oxygen levels at the sediment surface, eventually resulting in the absence of Neanthes from all offshore sites >2 m between July and November. In contrast, on shoreline rocky substrate, Neanthes persisted year round, and biomass density increased nearly one order of magnitude between January and November. The rocky shoreline had the highest numbers of invertebrates per unit area, exceeding those reported by other published sources for Neanthes, Gammarus mucronatus, Corophium louisianum, and Balanus amphitrite in marine coastal habitats. The rocky shoreline habitat is highly productive, and is an important refuge during periods of seasonal anoxia for Neanthes and for the other invertebrates that also serve as prey for fish and birds. 相似文献
3.
The life history of the barnacle Balanus amphitrite Darwin and its role in fouling communities of Golden Horn Bay (Peter the Great Bay), which is subjected to thermal pollution, were studied. The warm-water B. amphitrite occurs as a common minor species on operational vessels and waterworks in Peter the Great Bay, where it was brought by ocean-going ships operating on Russia–Japan lines. Even in the conditions of the higher temperature regime of Golden Horn Bay, the reproductive season of B. amphitrite is confined to the summer and autumn months. The adult individuals brought by ships in summer produce 2–3 generations of larvae. The development of larvae and their settling on the substrate occurs from August to October within a broad temperature range from 22.5 up to 12°C. Even in the low temperatures of Golden Horn Bay the larvae attain a greater size than those in tropical and subtropical waters. The juveniles have time to reach maturity and to produce their own progeny, but most often they perish with winter drop in the water temperature. It was shown that in Peter the Great Bay there is dependent population of B. amphitrite inhabiting the anthropogenic substrates only in the warm season: water works, idle vessels, and operational offshore vessels. The water temperature is the limiting factor of successful acclimation of that species. 相似文献
4.
Thirteen species, or putative species, of freeliving nematodes are recorded from a variety of habitats in the hypersaline Salton Sea, the largest inland lake in California. This doubles the number of species of multicellular invertebrates known to occur in the lake. All species are referable to known marine genera, and are regarded as having a marine coastal origin. The range of taxa present is representative of the full taxonomic spread found in marine coastal habitats, suggesting that a wide range of marine nematode taxa are capable of adapting to the hypersaline conditions. The broad spectrum of feeding types present suggests that nematodes play a variety of ecological roles within the lake. 相似文献
5.
Hellio C Tsoukatou M Maréchal JP Aldred N Beaupoil C Clare AS Vagias C Roussis V 《Marine biotechnology (New York, N.Y.)》2005,7(4):297-305
One of the most promising alternative technologies to antifouling paints based on heavy metals is the development of coatings whose active ingredients are compounds naturally occurring in marine organisms. This approach is based on the problem of epibiosis faced by all marine organisms and the fact that a great number of them cope with it successfully. The present study investigated the antifouling activity of a series of extracts and secondary metabolites from the epibiont-free Mediterranean sponges Ircinia oros, I. spinosula, Cacospongia scalaris, Dysidea sp., and Hippospongia communis. Antifouling efficacy was evaluated by the settlement inhibition of laboratory-reared Balanus amphitrite Darwin cyprids. The most promising activity was exhibited by the metabolites 2-[24-acetoxy]-octaprenyl-1-4-hydroquinone (8a), dihydrofurospongin II (10), and the alcoholic extract of Dysidea sp. 相似文献
6.
Marco Faimali Francesca Garaventa Mariachiara Chiantore 《Journal of experimental marine biology and ecology》2004,306(1):37-50
The settlement of marine larvae is influenced by a wide range of physical and biological factors. It is still poorly known how the nature of substrate and the biofilm can interact in regulating settlement patterns of invertebrate larvae. Here we use laboratory experiments focused on settlement behaviour of the barnacle Balanus amphitrite. The aim of this work is to understand whether: (i) the nature of substratum can affect biofilm formation and its structure, (ii) the nature of substratum can affect B. amphitrite larval settlement, (iii) the age of the biofilms and the nature of substrate can interact in influencing larval settlement.Four kinds of substrata (marble, quartz, glass, and cembonit) were biofilmed under laboratory conditions for 5, 10 and 20 days at the temperature of 28 °C. Settlement response was investigated with 5-day-old cyprids. Biofilms were quantitatively and qualitatively analysed by scanning electron microscopy. The settlement of B. amphitrite larvae significantly differed among substrata; also, the patterns of development of biofilm assemblages changed with substrate. In addition, the larval attractiveness of different substrates tends to disappear with biofilm age. 相似文献
7.
Laboratory studies on the coprecipitation of phosphate with calcium carbonate in the Salton Sea, California 总被引:4,自引:0,他引:4
The Salton Sea is a hypereutrophic, saline lake in the desert of southern California. Like many lakes, the primary productivity
of the Sea is limited by phosphorus. However, unlike most lakes, the release of P from the sediments is not controlled by
the reductive dissolution of Fe(III)-oxide minerals. Most of the iron in the sediments of the Salton Sea is present as Fe(II)-sulfides
and silicates. Rather, the sediments are dominated by calcite which is actively precipitating due to alkalinity production
via sulfate reduction reactions. We hypothesized that calcite could be an important sink for phosphorus released from the
decomposing organic matter. In this work we evaluated the potential for phosphate to coprecipitate with calcite formed in
simulated Salton Sea sediment pore water. At calcite precipitation levels and P concentrations typical for the Salton Sea
pore water, coprecipitation of P removed 82–100% of the dissolved phosphorus. The amount of P incorporated into the calcite
was independent of temperature. The results of this work indicate that the internal loading of P within the Salton Sea is
being controlled by calcite precipitation. Management of external P loading should have an immediate impact on reducing algae
blooms in the Salton Sea.
Guest editor: S. H. Hurlbert
The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife,
and People, 1905–2005, held in San Diego, California, USA, March 2005 相似文献
8.
Eric R. Holm Christopher J. Kavanagh Beatriz Orihuela Daniel Rittschof 《Journal of experimental marine biology and ecology》2009,380(1-2):61-67
Silicone fouling-release coatings represent a non-toxic alternative to biocide-containing ship hull paints. These coatings allow fouling organisms to attach to the hull surface, but prevent firm adhesion. Adhesive tenacity to fouling-release materials varies both among and within species. We quantified broad-sense genetic and environmental sources of intraspecific variation in tenacity to two silicone substrata, for the barnacle Balanus amphitrite. For both materials tenacity varied over an order of magnitude; however, the partitioning of this variation differed between the substrata. For International Veridian, a commercially-available fouling-release coating, removal stress varied significantly among maternal families and replicate barnacle cultures. Variation among the maternal families was associated with previously observed differences among these families in the condition of the adhesive plaque. Additional experiments suggested that variation among the replicate cultures arose from heterogeneity between replicate coatings in properties that affect tenacity. We could not attribute variation in removal stress for Dow Corning Silastic T-2, a silicone rubber used for mold-making, to any of the genetic or environmental sources tested. Instead, variation may have been due to measurement error or heterogeneity within replicate coatings in properties affecting tenacity. Differences among maternal families in removal stress may stem from variation in the interaction between the adhesive and the substratum, or in the viscoelastic properties of the adhesive plaque. 相似文献
9.
Milton Friend 《Hydrobiologia》2002,473(1-3):293-306
A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907–1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated 155000 birds, primarily eared grebes (Podiceps nigricollis), died from an undiagnosed cause. Reoccurrences of that unknown malady have continued to kill substantial numbers of eared grebes throughout the 1990s. The first major epizootic of type C avian botulism in fish-eating birds occurred in 1996 and killed large numbers of pelicans (Pelecanus occidentalis & P. erythrorhynchos). Avian botulism has remained as a major annual cause of disease in pelicans. In contrast, the chronic on-Sea occurrence of avian botulism in waterfowl and shorebirds of previous decades was seldom seen during the 1990s. Newcastle disease became the first viral disease to cause major bird losses at the Salton Sea when it appeared in the Mullet Island cormorant (Phalacrocorax auritus) breeding colony during 1997 and again during 1998. 相似文献
10.
Deborah M. Dexter 《Hydrobiologia》1993,267(1-3):203-209
The copepod Apocyclops dengizicus is a key item in the food chain of the Salton Sea where the salinity is currently 45 g 1–1. The salinity of the Salton Sea may reach 90 g 1 –1 within the next 20 years. This study examined the salinity tolerance of this copepod.Large copepodite and adult A. dengizicus were introduced into various salinities with and without acclimation. The 96 h LC50 without acclimation was 101 g 1–1. Mortality (at 96 h) without acclimation was low at salinities of 90 g 1 –1 or less.Copepod cultures were maintained, with successful reproduction of at least one new generation, at salinities of from 0.5 to 68 g 1 –1 for at least 120 days. Copepods maintained at higher salinities, up to 79 g 1 –1, remained alive up to 90 days, but a new generation was not produced. In laboratory studies of larval production and survivorship, few nauplii were released at salinities of 68 g 1 –1 or higher, and none survived to the copepodite stage. 相似文献
11.
Geochemistry of iron in the Salton Sea,California 总被引:1,自引:0,他引:1
The Salton Sea is a large, saline, closed-basin lake in southern California. The Sea receives agricultural runoff and, to
a lesser extent, municipal wastewater that is high in nutrients, salt, and suspended solids. High sulfate concentrations (4×
higher than that of the ocean), coupled with warm temperatures and low-redox potentials present during much of the year, result
in extensive sulfate reduction and hydrogen sulfide production. Hydrogen sulfide formation may have a dramatic effect on the
iron (Fe) geochemistry in the Sea. We hypothesized that the Fe(II)-sulfide minerals should dominate the iron mineralogy of
the sediments, and plans to increase hypolimnetic aeration would increase the amount of Fe(III)-oxides, which are strong adsorbers
of phosphate. Sequential chemical extractions were used to differentiate iron mineralogy in the lake sediments and suspended
solids from the tributary rivers. Iron in the river-borne suspended solids was mainly associated with structural iron within
silicate clays (70%) and ferric oxides (30%). The iron in the bottom sediments of the lake was associated with silicate minerals
(71% of the total iron in the sediments), framboidal pyrite (10%), greigite (11%), and amorphous FeS (5%). The ferric oxide
fraction was <4% of the total iron in these anaerobic sediments. The morphological characteristics of the framboidal pyrite
as determined using SEM suggest that it formed within the water column and experiences some changes in local redox conditions,
probably associated with alternating summer anoxia and the well-mixed and generally well-aerated conditions found during the
winter. The prevalence of Fe(II)-sulfide minerals in the sediments and the lack of Fe(III)-oxide minerals suggest that the
classic model of P-retention by Fe(III)-oxides would not be operating in this lake, at least during anoxic summer conditions.
Aeration of the hypolimnion could affect the internal loading of P by changing the relative amounts of Fe(II)-sulfides and
Fe(III)-oxides at the sediment/water interface.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Guest editor: S. H. Hurlbert
The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife
and People, 1905–2005, held in San Diego, California, USA, March 2005 相似文献
12.
Lidita Khandeparker S. Raghukumar 《Journal of experimental marine biology and ecology》2003,289(1):1-13
Modulation of metamorphosis in barnacles in response to cues of biological origin is established. The bacteria associated with the barnacles also have a role in such modulations. We isolated the bacteria, Pseudomonas aeruginosa, Bacillus pumilus and Citrobacter freundii from the shell surface of Balanus amphitrite and assayed against its cypris larvae. The former species was promotory while the latter two inhibited cyprid metamorphosis. P. aeruginosa however, when tagged with lectins specific to glucose and its derivatives, mannose and fructofuranose negated the promotory effect. Whereas, tagging of galactose derivatives translated the inhibitory effect of B. pumilus and C. freundii into a promotory one showing that lectins can alter the signals in either direction. Galactose-binding lectins have been identified in the haemolymph of barnacles, which could find their way through the excretory system to the surface. The presence of such lectins could probably provide this organism with an ability to alter the signals or cues. Microscale patchiness of bacteria is also evident on surfaces in the sea. The availability of conflicting cues in patches may help pilot the larvae to their settlement destination. Understanding these controlling mechanisms and interfering with the pathways that are involved in lectin synthesis would be a step forward in antifouling technology. 相似文献
13.
The diatom flora of the Salton Sea, California 总被引:1,自引:0,他引:1
We report on diatom species of the Salton Sea, a highly saline (43 g l–1) inland lake in California. We identified and photographed all diatom taxa encountered in the phytoplankton and benthos of the Salton Sea and its immediate tributaries. Ninety-four taxa were distinguished based on their morphological features using light- and electron microscopy. In the Salton Sea, there are four general categories of diatom assemblages related to their habitats: (1) A planktonic assemblage composed of Chaetoceros muelleri var. subsalsum, Cyclotella choctawhatcheeana, Cyclotella sp., Cylindrotheca closterium, Pleurosigma ambrosianum, Thalassionema sp.; (2) a benthic assemblage with diatoms that live on the bottom (e.g. genera Caloneis, Diploneis, Entomoneis, Gyrosigma, Plagiotropis, Pleurosigma, Surirella and Tryblionella), or in algal mats (Proschkinia bulnheimii, several species of Navicula and Seminavis gracilenta); (3) an epiphytic community attached to the macroscopic green algae which grow on the rocks and other hard surfaces near shore (e.g. Achnanthes brevipes, Licmophora ehrenbergii, Tabularia parva); and (4) a freshwater assemblage composed of species that get washed in by the rivers and other inflows discharging into the Sea (e.g. Achnanthidium minutissimum, Cocconeis pediculus, Cyclotella atomus, C. scaldensis, Nitzschia elegantula, T. weissflogii). The most striking feature of the phytoplankton is the abundance of species formerly known only from marine environments; this is not surprising given the high salinity and the peculiar history of the lake. 相似文献
14.
In the summer of 2004, a harmful bloom caused by Chattonella ovata (Raphidophyceae) occurred over almost the entire area of the Seto Inland Sea and caused fishery damages. This incident was the first record of a bloom and damage to the fisheries caused by this species in Japanese waters. In order to elucidate the mechanism of the bloom outbreak, we examined the nutrition and the growth kinetics in nitrogen (N)- and phosphorus (P)-limited semi-continuous cultures of this species. Inorganic N compounds, such as nitrate, nitrite, and ammonium, were found to be good nitrogen sources for the growth of C. ovata, while organic nitrogen (urea and uric acid) was not utilized. This species was capable of using ATP, ADP and inorganic phosphorus compounds, but did not utilize phosphate monoesters as a sole P source. Under both N-limited and P-limited steady state conditions, the growth rate as a function of cell nitrogen and phosphorus quota, respectively, followed the Droop equation. Kinetic parameters μm (maximum growth rate) and kq (minimum cell quota) obtained for N- and P-limited cultures were 0.79 day−1 and 5.5 pmol N cell−1 and 0.86 day−1 and 0.48 pmol P cell−1, respectively. The minimum cell quotas were 23–30% lower than those of C. antiqua. The nutrient availability and kinetic parameters of C. ovata are compared with other harmful algae and the ecological implications of these characteristics discussed. 相似文献
15.
Dattesh V Desai 《Journal of experimental marine biology and ecology》2004,306(1):113-137
The impact of diatom food species (Chaetoceros calcitrans and Skeletonema costatum), temperature and starvation on the larval development of Balanus amphitrite was evaluated. Starvation threshold levels for different ages of larvae (0- to 5-day-old) fed with C. calcitrans and S. costatum and then starved at 5, 15 and 25 °C temperature were estimated as ultimate recovery hour (URH; denoting the starvation point in hours at the end of which larvae can recover and continue development). Effect of temperature on starvation threshold varied significantly with larval age and food species. The URH declined with larval age at 5 °C, but not at 15 and 25 °C. The URH and grazing rates were high for early instars fed on C. calcitrans, and for advanced instars fed on S. costatum. Carbon gain through feeding was maximum for 2-day-old larvae when fed with C. calcitrans and decreased with larval age. However, when fed with S. costatum carbon gain increased with larval age. This confirms that with development the utility of food types changes. The differences in the carbon gain can be attributed to differences in grazing rate due to variations in the size of the diatom cells, larval intersetular distance, diatom sinking rate and the photo-taxic behavior of larvae. Molting was observed at times when larvae were undergoing starvation and this could be viewed as stress-induced molting, and it differed with the larval age and food organisms. 相似文献
16.
Biology and migration of Eared Grebes at the Salton Sea 总被引:2,自引:2,他引:0
The Eared Grebe (Podiceps nigricollis Brehm) is the North American bird species most closely associated with highly saline habitats, and in winter and early spring it is the most abundant waterbird at the Salton Sea. During the fall, the great majority of the North American population stages at hypersaline lakes in the Great Basin, departing in early winter for wintering areas in southern California and Mexico, principally in the central Gulf of California. On the northward return flight, nearly all the population passes through the Salton Sea, where concentrations of >1 million have been reported in February–March. After staging for several weeks, grebes leave in March–April and migrate toward breeding grounds in the northern United States and southern Canada. The Sea's development as the species' major spring staging area may be as recent as the 1960s, and presumably awaited the establishment of appropriate prey populations of marine worms. In the past decades, two major dieoffs at the Sea each resulted in the undiagnosed death of tens of thousands of birds. Whether the cause(s) are endemic to the Sea or involve the grebes' migration routes and stopover locations is unknown. Because of problems in estimating numbers, the significance of these mortality events is hard to evaluate. Population trends are better studied at fall staging areas, especially Mono Lake, where population turnover is inconsequential, grebes are virtually the only species present, and numbers can be ascertained by aerial photography. 相似文献
17.
A 1-year sampling program was conducted to assess current chemical and physical conditions in the Salton Sea. Analyses included general physical conditions and a suite of water quality parameters, including nutrients, trophic state variables, major cations and anions, trace metals and organic compounds. Samples were collected from three locations in the main body of the lake and from the three major tributaries. Nutrient concentrations in the Salton Sea are high and lead to frequent algal blooms, which in turn contribute to low dissolved oxygen concentrations. The tributaries consist primarily of agricultural return flows with high nutrient levels. Concentrations of trace metals and organic compounds do not appear to be of major concern. Two geochemical models, PHRQPITZ and PHREEQC, were used to evaluate potential chemical reactions limiting the solubility of selected water quality variables. Modeling indicated that the Salton Sea is supersaturated with respect to calcite, gypsum, and other minerals. Precipitation of these minerals may serve as a sink for phosphorus and limit the rate of salt accumulation in the Salton Sea. 相似文献
18.
We examined the relationship between growth rate, C:N:P stoichiometry, and nucleic acid content in Drosophila melanogaster. The "Growth Rate Hypothesis" predicts that N and P contents per unit body mass will be high during ontogenetic stages characterized by rapid growth, reflecting the large requirement for P-rich ribosomal RNA during these periods. The ratio of RNA:DNA also is predicted to change with changes in growth rate. Growth is rapid in early D. melanogaster larvae, slowing considerably just prior to pupation. As predicted, a positive relationship was found between growth rate and N and P content, but not C. Thus, body C:P and N:P ratios declined with increasing growth rate. The relationship between RNA content and growth rate also was positive. Additionally, the fraction of total body P contributed by ribosomal RNA increased with increasing growth rate. 相似文献
19.
N.V. Gohad G.H. Dickinson B. Orihuela D. Rittschof A.S. Mount 《Journal of experimental marine biology and ecology》2009,380(1-2):88-98
Thoracican barnacles are a unique suborder of crustaceans typified by their calcified exterior, which provides protection to the sessile juvenile and adult. Biomineralization is mediated by a mantle epithelium that appears to be involved in calcium uptake and the secretion of calcium laden matrix. Larval and adult intertidal Balanomorph barnacles tolerate a wide range of salinities and it is hypothesized that active ion transport is the primary mechanism for osmoregulation. We observed adult Amphibalanus amphitrite producing an electrolyte-rich secretion emanating from the junction of the basis and parietal plates. Further study of this region using silver staining microscopic techniques, verified by scanning electron microscopy-energy dispersive spectroscopy, revealed a chloride ion rich mantle epithelium. A distinctive pattern of silver chloride stained epithelia was revealed in all A. amphitrite life stages. These epithelia were observed to contain mitochondria rich cells in nauplius and cyprid larvae (as shown by DASPMI staining visualized with confocal laser scanning microscopy) and therefore exhibit potential for active ion transport. Rhod-5 N (a low affinity cellular Ca2+ indicator) labeling was also observed in all barnacle life stages, in tissues shown to be chloride positive. We suspect that the observed chloride ion rich epithelia facilitate ionic regulation via active transport, and biomineralization via cellular Ca2+ uptake, storage and mobilization. 相似文献
20.
Studies of the fisheries ecology and fish biology of the Salton Sea, California, were conducted in 1999 and 2000 using 50 m gill nets in river, nearshore, pelagic, and estuarine areas. Total lengths and weights were measured for all fish captured, and sub-samples were dissected for gonad weights and aging. Ten fish species were captured of which a hybrid tilapia (Oreochromis mossambicusx O. urolepis hornorum) was dominant by number and weight. Nearshore and estuarine areas had highest catch rates (over 11 kg h–1 net–1 for tilapia). Rivers were richest in the number of species (6 of 10 species were exclusively riverine), but lowest in fish abundance. Orangemouth corvina (Cynoscion xanthulus), bairdiella (Bairdiella icistia), sargo (Anisotremus davidsoni), and tilapia grew faster, but had shorter life spans than conspecifics elsewhere and Salton Sea conspecifics of 50 years ago. Reproduction occurred mostly in the nearshore and estuarine areas. Onset of reproduction of bairdiella and sargo was in the spring and extended through the beginning of summer. Reproduction of orangemouth corvina started in the summer and of tilapia in the spring. Reproduction of orangemouth corvina and tilapia extended through the fall. Gender ratios of tilapia were skewed toward males in all areas, except the rivers, where females predominated. All four species aggregated along the nearshore and estuarine areas in the summer when dissolved oxygen in the pelagic area was limited. Any restoration alternative for the Salton Sea should consider areas close to shore as primary areas for fish reproduction and survival. 相似文献