首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the enzyme UDP-glucose dehydrogenase from beef liver (E.C. 1.1.1.22) is known to abstract the pro-R hydrogen stereospecifically at carbon 6 of the glucose moiety of the substrate by a reversible step in converting UDP-glucose to UDP-alpha-D-gluco-hexodialdose (UDP-Glc-6-CHO), prolonged incubation of the enzyme with UDP-glucose and tritium-labeled NADH, under conditions favoring hydrogen exchange between the two, results in equivalent labeling of both hydrogens at carbon 6. This shows that the pro-S hydrogen at carbon 6 is also abstracted by a reversible process which must then involve a derivative of the carboxyl group of UDP-glucuronic acid (UDP-GlcUA) that is capable of reversible hydrogenation-dehydrogenation. It is the hydrolysis of this derivative that accounts for the well known irreversibility of the overall reaction. Derivatization of the enzyme's essential thiol group with 5,5'-dithiobis-(2-nitrobenzoate) eliminates the ability of the enzyme to either oxidize or reduce UDP-Glc-6-CHO. Replacement of the 5-thio-2-nitrobenzoate group with cyanide fully restores the enzyme's capacity to reduce UDP-Glc-6-CHO but has no effect on the inhibition of the oxidation to UDP-GlcUA. This indicates that the essential thiol group is involved in the second reversible dehydrogenation step and serves to form a thiol ester with the carboxyl of the product, UDP-GlcUA. It is suggested that thiol ester intermediates are a general characteristic of all 4-electron NAD-linked dehydrogenase reactions.  相似文献   

2.
1. UDP-xylose and UDP-glucose both bind to UDP-glucose dehydrogenase in the absence of NAD+, causing an enhancement of protein fluorescence. 2. The binding of UDP-xylose is pH-dependent, tighter binding being observed at pH8.2 than at pH8.7. 3. At low protein concentrations sigmiodal profiles of fluorescence enhancement are obtained on titration of the enzyme with UDP-xylose. As the protein concentration is increased the titration profiles become progressively more hypebolic in shape. 4. The markedly different titration profiles obtained on titrating enzyme and the enzyme-NAD+ complex with UDP-xylose suggests a conformational difference between these two species 5. NAD+ lowere the apparent affinity of the enzyme for UDP-xylose. 6. There is no change in the apparent moleculare weight of UDP-glucose dehydrogenase on binging UDP-xylose. 7. Protein modification by either diethyl pyrocarbonate or 5, 5'-dithiobis-(2-nitrobenzoate) does not "desensitize" the enzyme with respect to the inhibition by UDP-xylose. 8. UDP-xylose lowers the affinity of the enzyme for NADG. 9. It is suggested that UDP-xylose is acting as a substrate analogue of UDP-glucose and causes protein-conformational changes on binding to the enzyme.  相似文献   

3.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

4.
The properties of two carnitine acyltransferases (CPT) purified from bovine liver are compared to confirm that they are different proteins. The soluble CPT and the inner CPT from mitochondria differ in subunit Mr, native Mr, pI and reactivity with thiol reagents. All eight free thiol groups in soluble CPT react with 5,5'-dithiobis-(2-nitrobenzoate) in the absence of any unfolding reagent, and activity is gradually lost. The inner CPT activity is completely stable in the presence of 5,5'-dithiobis-(2-nitrobenzoate), and only one thiol group per molecule of subunit is modified in the native enzyme. Antisera to each enzyme inhibit that enzyme, but do not cross-react. CPT activity in subcellular fractions can now be identified by titration with these antibodies. The soluble CPT from bovine liver is probably peroxisomal in origin, but, although antigenically similar, it differs from the peroxisomal carnitine octanoyltransferase found in rat and mouse liver in its specificity for the longer-chain acyl-CoA substrates.  相似文献   

5.
The ATPase (adenosine triphosphatase) from sarcoplasmic reticulum contains 20 thiol groups/115000 daltons, measured by using either N-ethyl[(14)C]maleimide or 5,5'-dithiobis-(2-nitrobenzoate) in sodium dodecyl sulphate. After reduction there were 26 thiol groups, in good agreement with 26.5 residues of cysteic acid found by amino acid analysis. The difference between this and the 20 residues measured before reduction implies the presence of three disulphide residues. The same number of disulphide residues was found by direct measurement. Three to six fewer thiol groups were found in preparations made in the absence of dithiothreitol. The missing residues were accounted for as cysteic acid. The distribution of disulphide bonds and of exposed and buried thiol groups among the tryptic fragments of the molecule was measured after labelling with N-ethyl[(14)C]-maleimide. The disulphides were confined to fragment B (mol.wt. 55000), whereas several thiol groups were present on each of the fragments (A, B, A(1) and A(2)). The kinetics of the reaction of the ATPase with 5,5'-dithiobis-(2-nitrobenzoate) showed that four or five of the thiol groups were unreactive in the absence of detergent and that 13 of the remainder reacted with a single first-order rate constant. In the presence of ATP and Ca(2+) the reaction rate of all but two groups of this class was uniformly decreased. In the presence or absence of ATP and Ca(2+) the rate constant for inactivation was close to the rate constant for this class, but was not identical with it. No selective protection of a specific active-site-thiol group was observed. Parallel experiments with sarcoplasmic reticulum gave similar results, except that the reaction rates were a little lower and there were two more buried groups. Solution of ATPase of sarcoplasmic reticulum in detergent greatly increased the reactivity of all thiol groups. The effects of low concentrations of deoxycholate were reversible. EGTA or low concentrations (0.02mm) of Ca(2+) of Mg(2+) had very little effect on the reactivity.  相似文献   

6.
T Chase  Jr 《The Biochemical journal》1986,239(2):435-443
Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger.  相似文献   

7.
The effect of thiol reagents on GABA transport in rat brain synaptosomes   总被引:3,自引:0,他引:3  
The nature of gamma-aminobutyric acid (GABA) transport has been investigated in preparations of rat brain synaptosomes using a number of thiol reagents with varying membrane permeabilities. N-Ethylmaleimide, p-chloromercuribenzoate and p-chloromercuriphenylsulfonate effectively inhibited GABA transport in both directions (i.e., uptake and release) whereas 5,5'-dithiobis-2-nitrobenzoate, mercaptopropionate and N- nitroethylenediamine were much less effective, or ineffective, even at millimolar concentrations. For each of the thiol reagents, the inhibition profile for GABA uptake was approximately the same as that for its release. The effectiveness of the reagents indicates that there is an external, reactable SH-group on the transporter, that the thiol reagent must be somewhat lipophilic for it to react with the SH-group(s), and that the same synaptosomal transport system is responsible for both uptake and release of GABA.  相似文献   

8.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited by stoicheiometric concentrations of diethyl pyrocarbonate. The inhibition is due to the acylation of a single histidine residue/monomer (mol.wt. 36000). 2. Alcohol dehydrogenase is also inhibited by stoicheiometric amounts of 5,5'-dithiobis-(2-nitrobenzoate), owing to the modification of a single cysteine residue/monomer. 3. Native alcohol dehydrogenase binds two molecules of reduced coenzyme/molecule of enzyme (mol.wt. 144000). 4. Modification of a single histidine residue/monomer by treatment with diethyl pyrocarbonate prevents the binding of acetamide in the ternary complex, enzyme-NADH-acetamede, but does not prevent the binding of NADH to the enzyme. 5. Modification of a single cysteine residue/monomer does not prevent the binding of acetamide to the ternary complex. After the modification of two thiol groups/monomer by treatment with 5,5'-dithiobis-(2-nitrobenzoate), the capacity of enzyme to bind coenzyme in the ternary complex was virtually abolished. 6. From the results presented in this paper we conclude that at least one histidine and one cysteine residue are closely associated in the substrate-binding site of alcohol dehydrogenase.  相似文献   

9.
gamma-Glutamylcysteine synthetase (isolated from rat kidney) has one sulfhydryl group that reacts with 5,5'-dithiobis-(2-nitrobenzoate). This single exposed sulfhydryl group is not required for enzyme activity. The enzyme is potently inactivated by cystamine, which apparently interacts with a sulfhydryl group at the active site to form a mixed disulfide. 5,5'-Dithiobis-(2-nitrobenzoate) does not interact with the sulfhydryl group that reacts with cystamine. After the enzyme was 90% inactivated by reaction with cystamine, 3.4 mol of 5,5'-dithiobis-(2-nitrobenzoate) reacted per mol of enzyme, indicating that binding of cystamine exposes sulfhydryl groups which are apparently buried or unreactive in the native enzyme. L-Glutamate (but not D-glutamate or L-alpha-aminobutyrate) protected against inactivation by cystamine. In contrast, ATP enhanced the rate of inactivation by cystamine, and the apparent Km value for this effect is similar to that for ATP in the catalytic reaction. Studies on the structural features of cystamine that facilitate its interaction with the enzyme showed that selenocystamine, monodansylcystamine, and N-[2[2-aminoethyl)-dithio)ethyl]-4-azido-2-nitrobenzeneamine are also good inhibitors. Whereas S-(S-methyl)cysteamine-Sepharose does not interact with the enzyme (Seelig, G. F., and Meister, A. (1982) J. Biol. Chem. 257, 5092-5096), S-(S-methyl)cysteamine is a potent inhibitor; 1 mol of this compound completely inactivated 1 mol of enzyme. In the course of this work, a useful modification of the method for isolating this enzyme from kidney was developed.  相似文献   

10.
Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents.  相似文献   

11.
Exposed thiol groups of rabbit muscle aldolase A were modified by 5,5'-dithiobis(2-nitrobenzoic) acid with concomittant loss of enzyme activity. When 5-thio-2-nitrobenzoate residues bound to enzyme SH groups were replaced by small and uncharged cyanide residues the enzyme activity was restored by more than 50%. The removal of a bulky C-terminal tyrosine residue from the active site of aldolase A resulted in enzyme which was inhibited by 5,5'-dithiobis(2-nitrobenzoic) acid only by 50% and its activity was nearly unchanged after modification of its thiol groups with cyanide. The results obtained show directly that rabbit muscle aldolase A does not possess functional cysteine residues and that the inactivation of the enzyme caused by sulfhydryl group modification reported previously can be attributed most likely to steric hindrance of a catalytic site by modifying agents.  相似文献   

12.
The reactivity of the thiol groups of calf thymus deoxyribonucleohistone   总被引:1,自引:1,他引:0  
The reactivities of the two cysteine thiol groups of calf thymus F3 histone were investigated using 5,5'-dithiobis-[2- nitrobenzoic acid], (DTNB). In isolated histone, both thiol groups were available for reaction. However, analysis of reaction profiles of native deoxyribonucleohistone, (DNH), in various solvent conditions, together with gel electrophoresis studies of DNH modified with DTNB, showed that only one of the thiol groups is normally modified by the reagent. If NaCl is present (above 1.OM) the other thiol group can also be modified. The reactivities of both groups were largely independent of the degree of DNH supercoiling and of the binding of F3 to the DNA.  相似文献   

13.
Glutamine-dependent carbamyl phosphate synthetase (from Escherichia coli) was previously shown to be composed of a light subunit (molecular weight similar to 42,000) which has the binding site for glutamine and a heavy subunit (molecular weight similar to 130,000) which has binding sites for the other reactants and allosteric effectors. The subunits may be separated with retention of catalytic activities; only the separated light subunit exhibits glutaminase activity. The previous finding that storage of the native enzyme at pH 9 at 0 degrees increased its glutaminase activity by about 25-fold was further investigated; such storage markedly decreased the glutamine- and ammonia-dependent synthetase activities of the enzyme. Treatment of the enzyme with p-hydroxymercuribenzoate led to transient increase of glutaminase activity followed by inhibition. When the enzyme was treated with N-ethylmaleimide or with 5,5'-dithiobis-(2-nitrobenzoate), the glutaminase activity was increased by about 250-fold with concomitant loss of synthetase activities. The enhancement of glutaminase produced by storage of the enzyme at pH 9 was associated with intermolecular disulfide bond formation and aggregation of the enzyme. Aggregation also was observed after extensive treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoate) or N-ethylmaleimide. However, a moderate increase of glutaminase activity (about 30-fold) was observed without aggregation under conditions in which one sulfhydryl group on the light subunit reacted with either reagent. The findings suggest that the increased glutaminase activities observed here are associated with structural changes in the enzyme in which the intersubunit relationship is altered so as to uncouple the catalytic functions of the enzyme and to facilitate access of water to the glutamine binding site on the light subunit.  相似文献   

14.
Molecular properties of lysine-2,3-aminomutase   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase purified from Clostridium subterminale SB4 is reported to exhibit an apparent subunit Mr of 48,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the undenatured enzyme exhibits an apparent Mr of 285,000, as determined by electrophoretic mobility and gel permeation chromatography (Chirpich, T. P., Zappia, V., Costilow, R. N., and Barker, H. A. (1970) J. Biol. Chem. 245, 1778-1789). The diffusion coefficient of the enzyme is 3.36 x 10(-7) cm2/s, as determined by quasielastic light scattering. The overall Mr calculated from the diffusion coefficient and the published sedimentation coefficient is 259,000. Cross-linking experiments using glutaraldehyde and dithiobis(succinimidylpropionate) as cross-linking reagents indicate that the enzyme has a hexameric quaternary structure. The number of major cyanogen bromide peptides, compared with the methionine content of the enzyme, is consistent with the subunits being identical, and isoelectric focusing also is consistent with identical subunits. The circular dichroism of the enzyme indicates that it is a highly ordered structure, which is estimated to consist of 26% alpha-helix and 48% beta-sheet. The enzyme contains approximately six molecules of pyridoxal 5'-phosphate per hexamer, as determined by the phenyl-hydrazine method. The amino acid analysis of the enzyme, after performic acid oxidation, indicates that it contains approximately 13 cysteine residues per subunit. Six sulfhydryl groups per hexamer react readily with 5,5'-dithiobis-2-nitrobenzoate, indicating that one sulfhydryl group is accessible per subunit.  相似文献   

15.
Chicken liver fatty acid synthase is inhibited by the thiol-modifying reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetamide. Total inactivation of the activity for fatty acid synthesis requires the modification of about 8 of the nearly 50 freely accessible thiol groups per molecule. The differential binding of iodo[14C]acetamide to phenylmethylsulphonyl fluoride-modified enzyme in the absence and in the presence of excess acetyl-CoA shows complete modification of one cysteine-SH site of the condensing enzyme and partial modification of the pantetheine-SH site for a total of approx. 1.4 mol of iodoacetamide bound per mol of enzyme. The reaction of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) generates disulphide cross-links for each molecule of the reagent added, but 95% of these cross-links are intrasubunit. Both the iodoacetamide- and 5,5'-dithiobis-(2-nitrobenzoic acid)-modified species catalyse all the component partial reactions of fatty acid synthesis except the condensation reaction. The results obtained with iodoacetamide show that in the dimeric fatty acid synthase modification of one cysteine-SH condensing site and/or one pantetheine-SH site per dimer is sufficient to affect inhibition of condensing activity and the activity for fatty acid synthesis, and are in accord with a recently proposed model for the mechanism of action of animal fatty acid synthases [Kumar (1982) J. Theor. Biol. 95, 263-283].  相似文献   

16.
1. Citrate synthase has been purified from Escherichia coli and shown to exist at an equilibrium between three forms: monomer (mol.wt. 57000), tetramer (mol.wt. 230000) and, possibly, octamer. Modification of the enzyme by photo-oxidation and by treatment with specific chemical reagents has been carried out to gain information on the amino acid residues involved in enzymic activity and in the inhibition of activity by NADH and alpha-oxoglutarate. 2. Several photo-oxidizable amino acids appear to be involved in activity. The nature of the pH-dependence of their rates of photo-oxidation with Methylene Blue suggests that these are histidines, a conclusion supported by the greater rate of photo-inactivation with Rose Bengal and the destruction of activity by diethyl pyrocarbonate. 3. The participation of histidine at the alpha-oxoglutarate effector site is indicated by photo-oxidation and the participation of cysteine at the NADH effector site suggested by photo-oxidation is confirmed by the desensitization to NADH produced by treatment with 5,5'-dithiobis-(2-nitrobenzoate). Inactivation of the enzyme after modification with this reagent suggests the additional involvement of cysteine in catalytic activity. 4. Amino acid analyses of native and photo-oxidized enzyme are consistent with these conclusions. 5. Modification with 2-hydroxy-5-nitrobenzyl bromide indicates the participation of tryptophan in the activity of the enzyme.  相似文献   

17.
Hydrogenosomal ATP:AMP phosphotransferase of Trichomonas vaginalis   总被引:2,自引:0,他引:2  
1. ATP:AMP phosphotransferase (adenylate kinase) is present in Trichomonas vaginalis, primarily with hydrogenosomal localization. 2. Adenylate kinase has been purified from hydrogenosome-enriched fractions by solubilization with Triton X-100 and KCl followed by affinity chromatography and gel filtration. 3. The enzyme has a Mr = 28,000, a broad pH optimum of pH 7-9, requirement for Mg2+ and specificity for adenine and deoxyadenine nucleotides. 4. The activity is competetively inhibited by P1,P5-di(adenosine-5') pentaphosphate (Ki 200 nM) and reversibly inactivated by 5,5'-dithiobis-(2-nitrobenzoate). 5. Catalytic properties of this enzyme are similar to those of enzymes from other organisms. Other properties indicate its uniqueness, however, since its molecular mass and Ki for P1,P5-di(adenosine-5'-)-pentaphosphate bring it closer to the mitochrondrial isoenzyme, while it shares a requirement for reduced thiol groups with the cytosolic isoenzyme.  相似文献   

18.
1. Whereas the second-order rate constants for the reaction of the thiolate ion of 2-mercaptoethanol with 4,4'-dipyridyl disulphide (k4PDS) and with 5,5'-dithiobis-2-nitrobenzoate dianion increase with decreasing dielectric constant of the solvent, or remain unchanged, the rate constant for the analogous reaction with 2,2'-dipyridyl disulphide (k2PDS) decreases. This anomalous solvent effect and other unusual physicochemical properties of 2,2'-dipyridyl disulphide are discussed. 2. The differential effect of solvent on the reactions of thiolate ion with the 2,2'- and 4,4'-dipyridyl disulphides is shown to provide a method of characterizing solvent environments of thiol groups in proteins by a reactivity-probe method that should not suffer from the usual drawback associated with the existence of steric or binding effects of unknown magnitude. Application of the method to ficin (EC 3.4.22.3) suggests that its active-centre thiol group resides in a relatively hydrophobic environment. 3. The pH-k profile for the reaction of ficin with 4,4'-dipyridyl disulphide is reported.  相似文献   

19.
1. Compared with the acetylcholinesterase assay carried out in the absence of a dithiol, the presence of 5,5'-dithiobis-(2-nitrobenzoic acid) caused marked activation, 6,6'-dithiodinicotinic acid and 2,2'-dithiobis-(5-nitropyridine) less so and 2,2'-dithiodipyridine (aldrithiol-2) had no effect at all. Measurements are further complicated in that the 5-thio-2-nitrobenzoate ion also appears to interact with the enzyme, resulting in slightly lowered absorbance values. 2. Acetylthiocholine competes for the 5,5'-dithiobis-(2-nitrobenzoic acid)-binding site so that activation is essentially eliminated by saturating concentrations of substrate. The presence of the dithiol decreases the K(m) value of acetylthiocholine. 3. Similar results were obtained with pseudocholinesterase. However, with butyrylthiocholine clear activation was still observed under V(max.) conditions in addition to K(m) being lowered. 4. All the data yielded Hill coefficients of 1 and analysis of the results leads to the conclusion that activation results from the dithiol being bound to a site on the subunit that is actively catalysing ester hydrolysis. 5. The use of aldrithiol-2 is recommended for kinetic work where absolute quantitative measurements are required.  相似文献   

20.
1. The Ca(2+) dependence of the activity of plasma Factor XIII(a) was studied by using the continuous assay based on the incorporation of dansylcadaverine into dephosphorylated acetylated beta-casein (beta-substrate). The K(m) for Ca(2+) is about 0.170mm. 2. At low concentrations of Ca(2+) there was a lag in attaining the steady-state rate. The size of the lag was decreased and eventually abolished if the enzyme was preincubated with a high concentration of Ca(2+) before assay. The concentration of Ca(2+) required to decrease the lag phase by 50% in 10min depended on the protein concentration: at 0.87mg of protein/ml it required 17mm-Ca(2+) and at 0.44mg/ml it needed 10mm-Ca(2+). 3. The concentrations of Ca(2+) required either to abolish the lag phase in the appearance of enzyme activity or to activate the essential thiol for reaction with 5,5'-dithiobis-(2-nitrobenzoate) in 10min incubation were similar at the same protein concentration. This indicated that Ca(2+) induces a conformation change that is responsible for both phenomena. A model is proposed that links this conformation change to the dissociation of the tetrameric enzyme. 4. This was supported by the observation that the addition of excess of b chains to the Factor XIII(a) (a'(2)b(2)) increased the concentration of Ca(2+) required to expose the reactive thiol, and inhibited the Ca(2+)-dependent aggregation of a' chains. 5. Platelet Factor XIII(a) (a'(2)) was inhibited by 5,5'-dithiobis-(2-nitrobenzoate) in the absence of Ca(2+), and no lag phases were observed in attaining the steady-state rate at low Ca(2+) concentrations, thus confirming the model for the activation of the plasma enzyme. 6. The Ca(2+) dependence of platelet Factor XIII(a) indicated that Ca(2+) has an additional role in the enzyme mechanism of the plasma enzyme, perhaps being involved in substrate binding. 7. The dependence of the stability of plasma Factor XIII(a) on Ca(2+) and protein concentration indicates that the decay in activity is related to the tetramer dissociation. 8. beta-Substrate decreased the Ca(2+) concentration required for (1) abolition of the lag phase and (2) enzyme inhibition by thiol reagents. The effect on the former is greater than on the latter. 9. The role of the b chains of the plasma Factor and the evolutionary significance of the plasma and platelet Factors are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号