首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

We have used the electrocyte of Torpedo electric organ as a model system for the study of AchR stabilization in the post-synaptic membrane. Attention was focused on membrane cytoskeleton interactions in particular on a peripheral protein of 43 KD that is believed to participate in AchR immobilization.

Using immunocytochemical methods, we have shown that the cortical skeleton in Torpedo electrocyte displays a local differentiation proper for each specialized domain of the plasma membrane. In the postsynaptic membrane, characterized by an accumulation and a geometrical organization of the receptors in the plane of the membrane, the 43 KD protein participates in a submembraneous coating or “postsynaptic densities” that strictly codistribute with the AchR. The 43 KD protein might also account for the anchoring of intermediate-sized filaments.

The organization of the postsynaptic domain appears readily different from that of the non-innervated one where the membrane folds are maintained by a cortical meshwork of cytoskeletal proteins such as ankyrin, spectrin and oligomeric actin.

In conclusion, the asymmetrical organization of the cortical skeleton in the electrocyte offers a unique opportunity for the study of the specific aspects of membrane-skeleton interactions that take place in the postsynaptic domain.  相似文献   

2.
Summary Synaptogenesis has been studied in the electric organ of embryonic Torpedo marmorata by use of two antisera directed against components of synaptic vesicles (anti-SV) and presynaptic plasma membranes (ap-anti-TSM), respectively. The anti-SV serum was previously shown to recognize a proteoglycan specific for synaptic vesicles. The ap-anti-TSM serum was raised to plasma membranes of synaptosomes derived from the electromotor nerve terminals and affinity-purified on electric-organ gangliosides. The vesicular antigen was first detectable at the 81-mm stage of development, which is 1–2 weeks earlier than the formation of morphologically mature presynaptic terminals, but is coincident with a rise in choline acetyltransferase levels and the ability of the electric organ to generate discharges. The gangliosidic antigen recognized by the ap-anti-TSM was first detectable on the ventral electrocyte surface at the 93-mm stage of development. This indicates that specific carbohydrate epitopes, not present on the growth cones, are expressed during maturation of the nerve terminal. The nerve terminal components recognized by these sera arose pari passu with neurite coverage of the ventral surface of the electrocyte, reaching a maximum in the adult. In contrast, postsynaptic aggregates of acetylcholine receptor, rendered visible with rhodamine-labeled -bungarotoxin, arose previous to the presynaptic antigens, reaching a maximum surface density at 110 mm and then declining in the adult.  相似文献   

3.
The subcellular distribution of the 43,000-D protein (43 kD or v1) and of some major cytoskeletal proteins was investigated in Torpedo marmorata electrocytes by immunocytochemical methods (immunofluorescence and immunogold at the electron microscope level) on frozen-fixed sections and homogenates of electric tissue. A monoclonal antibody directed against the 43-kD protein (Nghiêm, H. O., J. Cartaud, C. Dubreuil, C. Kordeli, G. Buttin, and J. P. Changeux, 1983, Proc. Natl. Acad. Sci. USA, 80:6403-6407), selectively labeled the postsynaptic membrane on its cytoplasmic face. Staining by anti-actin and anti-desmin antibodies appeared evenly distributed within the cytoplasm: anti-desmin antibodies being associated with the network of intermediate-sized filaments that spans the electrocyte, and anti-actin antibodies making scattered clusters throughout the cytoplasm without preferential labeling of the postsynaptic membrane. On the other hand, a dense coating by anti-actin antibodies became apparent on the postsynaptic membrane in homogenates of electric tissue pointing to the possible artifactual redistribution of a soluble cytoplasmic actin pool. Anti-fodrin and anti-ankyrin antibodies selectively labeled the non-innervated membrane of the cell. F actin was also detected in this membrane. Filamin and vinculin, two actin-binding proteins recently localized at the rat neuromuscular junction (Bloch, R. J., and Z. W. Hall, 1983, J. Cell Biol., 97:217-223), were detected in the electrocyte by the immunoblot technique but not by immunocytochemistry. The data are interpreted in terms of the functional polarity of the electrocyte and of the selective interaction of the cytoskeleton with the innervated and non-innervated domains of the plasma membrane.  相似文献   

4.
5.
《The Journal of cell biology》1989,109(4):1745-1752
The Torpedo electrocyte is a flattened syncytium derived from skeletal muscle, characterized by two functionally distinct plasma membrane domains. The electrocyte is filled up with a transversal network of intermediate filaments (IF) of desmin which contact in an end-on fashion both sides of the cell. In this work, we show that polyclonal antibodies specific for lamin B recognizes a component of the plasma membrane of Torpedo electrocyte. This protein which thus shares epitopes with lamin B has a relative molecular mass of 54 kD, an acidic IP of 5.4. It is localized exclusively on the cytoplasmic side of the innervated membrane of the electrocyte at sites of IF-membrane contacts. Since our previous work showed that the noninnervated membrane contains ankyrin (Kordeli, E., J. Cartaud, H. O. Nghiem, L. A. Pradel, C. Dubreuil, D. Paulin, and J.-P. Changeux. 1986. J. Cell Biol. 102:748-761), the present results suggest that desmin filaments may be anchored via the 54-kD protein to the innervated membrane and via ankyrin to the noninnervated membrane. These findings would represent an extension of the model proposed by Georgatos and Blobel (Georgatos, S. D., and G. Blobel. 1987a. J. Cell Biol. 105:105-115) in which type III intermediate size filaments are vectorially inserted to plasma and nuclear membranes by ankyrin and lamin B, respectively.  相似文献   

6.
Summary A combination of direct fluorescence and indirect immunofluorescence microscopy has been used to compare the distribution of the acetylcholine receptor with the distribution of major cytoskeletal and extracellular matrix components during electrocyte differentiation in the electric organs of Torpedo marmorata. Laminin, fibronectin and extracellular matrix proteoglycan are always more extensively distributed around the differentiating cell than the acetylcholine receptor-rich patch that forms on the ventral surface of the cell. The distribution of acetylcholinesterase within the ventral surface of the differentiating electrocyte closely resembles the distribution of the acetylcholine receptor. Areas of apparently high acetylcholine receptor density within the ventrally forming acetylcholine receptor-rich patch are always areas of apparently high extracellular matrix proteoglycan density but are not always areas of high laminin or fibronectin density. Desmin levels appear to increase at the onset of differentiation and desmin initially accumulates in the ventral pole of each myotube as it begins to form an electrocyte. During differentiation F-actin-positive filament bundles are observed that extend from the nuclei down to the ventrally forming acetylcholine receptorrich patch. Most filament bundles terminate in the acetylcholine receptor-rich region of the cell membrane. Electronmicroscopic autoradiography suggests that the filament bundles attach to the membrane at sites where small acetylcholine receptor clusters are found. The results of this study suggest that, out of the four extracellular matrix components studied, only the distribution of acetylcholinesterase (which may be both matrix- and membrane-bound at this stage) closely parallels that of the acetylcholine receptor, and that F-actin filament bundles terminate in a region of the cell that is becoming an area of high acetylcholine receptor density.Abbreviations ACHR nicotinic acetylcholine receptor - ACHE acetylcholinesterase - BSA bovine serum albumin - EMPG extracellular matrix proteoglycan fraction - FITC fluorescein isothiocyanate - FN fibronectin - LN laminin - TBS Tris-HCl-buffered saline - SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

7.
The subcellular distribution of soluble and filamentous forms of actin in Torpedo marmorata electrocyte was investigated by cytochemical methods. Under conditions of adequate fixation of the electric tissue, two different monoclonal anti-actin antibodies revealed, in situ, actin only in the cytoplasm, never in association with the innervated and non-innervated membranes. On the other hand, a fluorescent derivative of phalloidin labeled the polymerized F-form of actin at the level of the non-innervated membrane and of the nerve terminals. However, after homogenization of the tissue, innervated membrane fragments, which still comprised cytoskeletal filaments, were systematically labeled on their cytoplasmic face. In these membrane fragments, cytoplasmic actin was never observed on the cytoskeleton. These results point to a redistribution of actin during tissue fractionation. The secondary binding of actin to the cytoplasmic surface of the postsynaptic membrane is consistent with its known in vitro interaction with the membrane-bound, 43 kd (v1) protein. Thus, at variance with the 43 kd protein, actin is not a prominent component of the mature Torpedo postsynaptic domain, and its suggested contribution to the stabilization of the AchR in the postsynaptic membrane should be reconsidered.  相似文献   

8.
The postsynaptic membrane of the neuromuscular junction contains a myristoylated 43-kD protein (43k) that is closely associated with the cytoplasmic face of the nicotinic acetylcholine receptor (AChR)-rich plasma membrane. Previously, we described fibroblast cell lines expressing recombinant AChRs. Transfection of these cell lines with 43k was necessary and sufficient for reorganization of AChR into discrete 43k-rich plasma membrane domains (Phillips, W. D., C. Kopta, P. Blount, P. D. Gardner, J. H. Steinbach, and J. P. Merlie. 1991. Science (Wash. DC). 251:568-570). Here we demonstrate the utility of this expression system for the study of 43k function by site-directed mutagenesis. Substitution of a termination codon for Asp254 produced a truncated (28-kD) protein that associated poorly with the cell membrane. The conversion of Gly2 to Ala2, to preclude NH2-terminal myristoylation, reduced the frequency with which 43k formed plasma membrane domains by threefold, but did not eliminate the aggregation of AChRs at these domains. Since both NH2 and COOH-termini seemed important for association of 43k with the plasma membrane, a deletion mutant was constructed in which the codon Gln15 was fused in-frame to Ile255 to create a 19-kD protein. This mutated protein formed 43k-rich plasma membrane domains at wild-type frequency, but the domains failed to aggregate AChRs, suggesting that the central part of the 43k polypeptide may be involved in AChR aggregation. Our results suggest that membrane association and AChR interactions are separable functions of the 43k molecule.  相似文献   

9.
The appearance and distribution of the extracellular material glycoprotein, fibronectin, was investigated in gastrulating chick embryos using affinity-purified anti-human plasma fibronectin antibodies. Preservation of tissue structure and immunoreactivity was carried out by ethanol/acetic acid fixation or by formaldehyde/glutaraldehyde fixation. Using the former fixation method, fibronectin immunoreactivity was detected (1) at the ventral surface of the upper layer or epiblast, mainly anterior and lateral to Hensen's node, in regions where middle-layer or mesoblast cells are not yet present, and (2) sparsely in extracellular spaces of the deep layer. Using the latter fixation method, fibronectin immunoreactivity was, moreover, found at the entire ventral surface of the upper layer, i.e., also at the epithelial-mesenchymal interface, where a basement membrane was previously described. At the light microscope level, we could not detect significant immunoreactivity in the middle layer. Treatment of sections of ethanol-fixed blastoderms with testicular hyaluronidase before immunostaining for fibronectin partially demasked the antigenic sites of this glycoprotein at the epithelial-mesenchymal interface. The present report indicates that the different regional patterns of fibronectin immunoreactivity in the basement membrane of the upper layer are spatially and temporally correlated with migration and positioning of mesoblast cells. These regional patterns are probably due to differences in the composition of fibronectin-associated material such as chondroitin sulfate A and/or C proteoglycans, and/or hyaluronate, before and after mesoblast expansion, rather than to differences in the distribution of fibronectin itself. In this respect, it is noteworthy that the chemical composition of the basement membrane of an epithelium changes as mesenchyme cells migrate over it. The results also favor the idea that fibronectin is a structural component of the whole basement membrane which is used as a substrate for migration of mesenchymal cells.  相似文献   

10.
A GPI-anchored 80-kD protein was found to be the major component of detergent-insoluble complexes, prepared from fetal porcine small intestine, constituting about 25% of the total amount of protein. An antibody was raised to the 80-kD protein, and by immunogold electron microscopy of ultracryosections of mucosal tissue, the protein was localized to the apical surface of the enterocytes, whereas it was absent from the basolateral plasma membrane. Interestingly, it was mainly found in patches of flat or invaginated apical membrane domains rather than at the surface of microvilli. Caveolae were not found in association with these labeled microdomains. In addition, the 80-kD protein was seen in apical endocytic vacuoles and in tubulo-vesicular structures, suggesting that the apical microdomains are involved in endocytosis of the 80-kD protein. By its NH2-terminal amino acid sequence, iron-binding capacity and partial immunological cross- reactivity with serum transferrin, the 80-kD protein was shown to belong to the transferrin family, and it is probably homologous to melanotransferrin, a human melanoma-associated antigen. The 80-kD iron- binding protein was fully detergent-soluble immediately after synthesis and only became insoluble after gaining resistance to endo H, supporting a mechanism for exocytic delivery to the apical cell surface by way of detergent-insoluble glycolipid "rafts" that fuse with the plasmalemma at restricted sites devoid of microvilli.  相似文献   

11.
Citrus exhibits polyembryonic seed development, an apomictic process in which many maternally derived embryos arise from the nucellus surrounding the developing zygotic embryo. Citrus seed storage proteins were used as markers to compare embryogenesis in developing seeds and somatic embryogenesis in vitro. The salt-soluble, globulin protein fraction (designated citrin) was purified from Citrus sinensis cv Valencia seeds. Citrins separated into two subunits averaging 22 and 33 kD under denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A cDNA clone was isolated representing a citrin gene expressed in seeds when the majority of embryos were at the early globular stage of embryo development. The predicted protein sequence was most related to the globulin seed storage proteins of pumpkin and cotton. Accumulation of 33-kD polypeptides was first detected in polyembryonic Valencia seeds when the majority of embryos were at the globular stage of development. Somatic Citrus embryos cultured in vivo were observed to initiate 33-kD polypeptide accumulation later in embryo development but accumulated these peptides at only 10 to 20% of the level observed in polyembryonic seeds. Therefore, factors within the seed environment must influence the higher quantitative levels of citrin accumulation in nucellar embryos developing in vivo, even though nucellar embryos, like somatic embryos, are not derived from fertilization events.  相似文献   

12.
The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39. Other (62, 51, and 25 kD) quantitatively minor peripheral proteins also interact with IP39 on the nitrocellulose overlays, and the possible significance of this binding is discussed.  相似文献   

13.
The first long tract to form in the brain of a vertebrate embryo is the ventral longitudinal pathway. In order to investigate what chemical cues may guide nerve growth cones along this pathway, affinity-purified antibodies to laminin and collagen type IV were used to stain sections of mouse embryos from Embryonic Days 8 through 17. A monoclonal anti-neurofilament antibody was used to show the development of the ventral longitudinal pathway in relationship to immunoreactivity for laminin and collagen type IV. At Day 8 fluorescent immunoreactivity for laminin is bright in the external limiting membrane of the neural tube, but the neuroepithelium does not show bright laminin or neurofilament immunoreactivity. At E9 the ventral longitudinal pathway is forming and punctate immunoreactivity for laminin is present on the surfaces of neuroepithelial cells in the marginal zone, through which axons of the ventral pathway extend. Punctate immunofluorescence for laminin remains concentrated in the marginal zone on Days E10 through E14, but on E16 punctate immunofluorescence was much reduced, although immunoreactivity for laminin remained bright in the maturing pial and arachnoid membranes and on blood vessels in the brain. Immunoreactivity for collagen type IV was strong in the external limiting membrane and on blood vessels, but never showed concentrated punctate immunofluorescence in the marginal zone. These results indicate that laminin may be available on cell surfaces and in extracellular spaces as an adhesive ligand for growth cones during the formation of the ventral longitudinal pathway.  相似文献   

14.
The developing neuromuscular junction has provided an important paradigm for studying synapse formation. An outstanding feature of neuromuscular differentiation is the aggregation of acetylcholine receptors (AChRs) at high density in the postsynaptic membrane. While AChR aggregation is generally believed to be induced by the nerve, the mechanisms underlying aggregation remain to be clarified. A 43-kD protein (43k) normally associated with the cytoplasmic aspect of AChR clusters has long been suspected of immobilizing AChRs by linking them to the cytoskeleton. In recent studies, the AChR clustering activity of 43k has, at last, been demonstrated by expressing recombinant AChR and 43k in non-muscle cells. Mutagenesis of 43k has revealed distinct domains within the primary structure which may be responsible for plasma membrane targeting and AChR binding. Other lines of study have provided clues as to how nerve-derived (extracellular) AChR-cluster inducing factors such as agrin might activate 43k-driven postsynaptic membrane specialization.  相似文献   

15.
The extracellular compartment where bone resorption occurs, between the osteoclast and bone matrix, is shown in this report to be actively acidified. The weak base acridine orange accumulates within this compartment but dissipates after incubation with ammonium chloride. Upon removal of ammonium chloride, the cells are able to rapidly reacidify this compartment. The highly convoluted plasma membrane of the osteoclast facing this acidic compartment (ruffled border) is shown to contain a 100-kD integral membrane protein otherwise present in limiting membranes of lysosomes and other related acidified organelles (Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard, 1984, J. Cell Biol., 99:1511-1526; Tougard, C., D. Louvard, R. Picart, and A. Tixier-Vidal, 1985, J. Cell Biol. 100:786-793). Antibodies recognizing this 100-kD lysosomal membrane protein cross-react with a proton-pump ATPase from pig gastric mucosae (Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard, 1984, J. Cell Biol., 99:1511-1526), therefore raising the possibility that it plays a role in the acidification of both intracellular organelles and extracellular compartments. Lysosomal enzymes are also directionally secreted by the osteoclast into the acidified extracellular compartment which can therefore be considered as the functional equivalent of a secondary lysosome with a low pH, acid hydrolases, the substrate, and a limiting membrane containing the 100-kD antigen.  相似文献   

16.
《The Journal of cell biology》1993,123(6):1587-1595
We have used a transfection based approach to analyze the role of neural cell adhesion molecule (NCAM) in myogenesis at the stage of myoblast fusion to form multinucleate myotubes. Stable cell lines of myogenic C2 cells were isolated that express the transmembrane 140- or 180-kD NCAM isoforms or the glycosylphosphatidylinositol (GPI) linked isoforms of 120 or 125 kD. We found that expression of the 140-kD transmembrane isoform led to a potent enhancement of myoblast fusion. The 125-kD GPI-linked NCAM also enhanced the rate of fusion but less so when a direct comparison of cell surface levels of the 140-kD transmembrane form was carried out. While the 180-kD transmembrane NCAM isoform was effective in promoting C2 cell fusion similar to the 140-kD isoform, the 120-kD isoform did not have an effect on fusion parameters. It is possible that these alterations in cell fusion are associated with cis NCAM interactions in the plane of the membrane. While all of the transfected human NCAMs (the transmembrane 140- and 180-kD isoforms and the 125- and 120-kD GPI isoforms) could be clustered in the plane of the plasma membrane by species-specific antibodies there was a concomitant clustering of the endogenous mouse NCAM protein in all cases except with the 120-kD human isoform. These studies show that different isoforms of NCAM can undergo specific interactions in the plasma membrane which are likely to be important in fusion. While the transmembrane and the 125-kD GPI-anchored NCAMs are capable of enhancing fusion the 120-kD GPI NCAM is not. Thus it is likely that interactions associated with NCAM intracellular domains and also the muscle specific domain (MSD) region in the extracellular domain of the GPI-linked 125-kD NCAM are important. In particular this is the first role ascribed to the O-linked carbohydrate containing MSD region which is specifically expressed in skeletal muscle.  相似文献   

17.
The cellular distribution, membrane orientation, and biochemical properties of the two major NaOH-insoluble (integral) plasma membrane proteins of Euglena are detailed. We present evidence which suggests that these two polypeptides (Mr 68 and 39 kD) are dimer and monomer of the same protein: (a) Antibodies directed against either the 68- or the 39-kD polypeptide bind to both 68- and 39-kD bands in Western blots. (b) Trypsin digests of the 68- and 39-kD polypeptides yield similar peptide fragments. (c) The 68- and 39-kD polypeptides interconvert during successive electrophoresis runs in the presence of SDS and beta- mercaptoethanol. (d) The 39-kD band is the only major integral membrane protein evident after isoelectric focusing in acrylamide gels. The apparent shift from 68 to 39 kD in focusing gels has been duplicated in denaturing SDS gels by adding ampholyte solutions directly to the protein samples. The membrane orientation of the 39-kD protein and its 68-kD dimer has been assessed by radioiodination in situ using intact cells or purified plasma membranes. Putative monomers and dimers are labeled only when the cytoplasmic side of the membrane is exposed. These results together with trypsin digestion data suggest that the 39- kD protein and its dimer have an asymmetric membrane orientation with a substantial cytoplasmic domain but with no detectable extracellular region. Immunolabeling of sectioned cells indicates that the plasma membrane is the only cellular membrane with significant amounts of 39- kD protein. No major 68- or 39-kD polypeptide bands are evident in SDS acrylamide gels or immunoblots of electrophoresed whole flagella or preparations enriched in flagellar membrane vesicles, nor is there a detectable shift in any flagellar polypeptide in the presence of ampholyte solutions. These findings are considered with respect to the well-known internal crystalline organization of the euglenoid plasma membrane and to the potential for these proteins to serve as anchors for membrane skeletal proteins.  相似文献   

18.
Rhamphichthys rostratus (L.) emits brief pulses (2 ms) repeated very regularly at 50 Hz. The electric organ shows a heterogeneous distribution of the electrocyte tubes and the occurrence of three electrocyte types (caudally innervated, rostrally innervated and marginallycaudally innervated). In the sub-opercular region the electric organ consists of a pair of tubes containing only caudally innervated electrocytes. At the abdominal region the EO consists of three pairs of tubes. Each pair contains one of the described electrocyte types. The number of electrocyte tubes increases toward the tail to reach nine or ten pairs in the most caudal segments. In the intermediate region most tubes contain doubly innervated electrocytes except the ventral pair that contains caudally innervated electrocytes. The caudal 25% contains exclusively caudally innervated electrocytes. The electric organ discharge consists of five wave components (V1 to V5). Electrophysiological data are consistent with the hypothesis that V1 results from the activity of the rostral faces of rostrally innervated electrocytes. V2 results from the activities of rostral faces of marginally-caudally innervated electrocytes while V3 results from the activities of caudal faces of most electrocytes. Curarization experiments demonstrated that V4 and V5 result from action potential invasion and are not directly elicited by neural activity.Abbreviations AEN1 anterior electromotor nerve 1 - AEN2 anterior electromotor nerve 2 - BMB boraxic methylene blue - CIE caudally innervated electrocytes - EMF electromotive force - EO electric organ - EOD electric organ discharge - I current amplitude - MCIE marginally-caudally innervated electrocytes - MT medial tubes - PEN posterior electromotor nerve - R n internal impedance - RIE rostrally innervated electrocytes - Rl load resistor - SAT short abdominal tubes - V voltage amplitude  相似文献   

19.
The 43-kD protein is a peripheral membrane protein that is in approximately 1:1 stoichiometry with the acetylcholine receptor (AChR) in vertebrate muscle cells and colocalizes with it in the postsynaptic membrane. To investigate the role of the 43-kD protein in AChR clustering, we have isolated C2 muscle cell lines in which some cells overexpress the 43-kD protein. We find that myotubes with increased levels of the 43-kD protein have small AChR clusters and that those with the highest levels of expression have a drastically reduced number of clusters. Our results suggest that the 1:1 stoichiometry of AChR and 43-kD protein found in muscle cells is important for AChR cluster formation.  相似文献   

20.
Localization of an extracellular matrix protein, Th-nectin, in the eggs and embryos of the sea urchin Temnopleurus hardwickii was examined by both immunofluorescence and immunoelectron microscopy. The protein is associated with a tubular structure packaged in rod-shaped vesicles that were designated as 'nectosomes'. In unfertilized eggs, nectosomes are distributed uniformly throughout the cytoplasm, but after fertilization, they gradually translocate to the cortical zone where they are arranged perpendicular to the plasma membrane. The migration of the nectosomes was strongly inhibited by cytochalasin B, which suggested that microfilaments play an important role in this process. Immunocytochemical and immunoblotting analyses both ascertained that nectin is secreted into the hyaline layer. Some nectosomes remain in the apical cytoplasm of dermal cells until the gastrula stage. Ultrastructural examination revealed that the accumulation of nectosomes in the oocyte cytoplasm begins quite early in oogenesis, concomitant with the accumulation of cortical vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号