首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
干扰Sirt2促进C2C12成肌细胞分化   总被引:1,自引:0,他引:1  
Sirt2是组蛋白去乙酰化酶(HDAC III)家族成员之一, 对细胞周期、自噬、脂肪细胞分化、神经细胞存活等生物学过程的调节发挥重要作用. 目前,Sirt2在肌肉发育过程中的研究尚未见报道.本文通过构建Sirt2慢病毒干扰载体,侵染C2C12成肌细胞,并用细胞免疫荧光化学、real-time PCR 和Western印迹方法,检测其对成肌分化标志基因及相关信号通路因子的影响. 结果显示,干扰质粒shRNA 663处理C2C12细胞后,Sirt2 mRNA及蛋白质表达水平与对照相比显著下调(P<0.01);C2C12细胞分化第4 d,MyoD,MyoG,MyHC mRNA及蛋白质表达均显著增加(P<0.01); PI3K,AKT,FoxO1磷酸化水平明显升高. 结果表明,Sirt2可通过PI3K/AKT/FOXO1信号通路来促进成肌细胞分化,是肌生成的一个潜在调节因子.  相似文献   

2.
高表达FoxO1抑制猪骨骼肌成肌细胞的分化   总被引:1,自引:0,他引:1  
FoxO1(Forkhead box O1)是调控肌肉生长、代谢和细胞分化的重要转录因子,但其在成肌细胞分化中的作用还不甚清楚。为了研究FoxO1对哺乳动物成肌细胞分化的影响,以原代培养的长白仔猪成肌细胞作为实验材料,用2%马血清诱导分化,采用实时荧光定量PCR、Western blotting和脂质体转染等方法检测FoxO1及早期和晚期生肌调节因子MyoD和myogenin在猪成肌细胞分化过程中的表达变化。结果显示,在猪成肌细胞分化过程中,FoxO1mRNA表达量显著增加,但总蛋白量变化不显著,其磷酸化水平显著上调。同时,高表达FoxO1的猪成肌细胞中,生肌调节因子MyoD和myogenin mRNA表达受到显著抑制,而MyoD蛋白变化不显著,myogenin却显著下调(P0.05)。以上结果表明,FoxO1能够推迟猪成肌细胞的分化时间并抑制分化;同时推测,FoxO1可能通过抑制生肌调节因子的表达控制骨骼肌纤维类型的终末分化。  相似文献   

3.
本研究旨在探究甲基转移酶METTL21C在家禽骨骼肌发育分化过程中的作用。采用实时荧光定量PCR (quantitative Real-time PCR, qPCR)检测METTL21C基因在鸡不同组织中的表达情况,绘制其组织表达谱;选取3个时间点,检测其在骨骼肌组织中的表达情况。通过酶消化法从鸡骨骼肌组织中分离得到原代细胞;将METTL21C超表达载体转染至原代鸡骨骼肌细胞,通过qPCR和Western blotting检测Pax7、MyoD、Myf5、MyoG等基因的表达水平。结果显示,METTL21C在心肌和骨骼肌组织中的表达量显著高于其他组织,在胚胎期和幼龄期骨骼肌中的表达呈上升趋势;超表达METTL21C后,成肌相关基因Pax7、MyoD、Myf5、MyoG的表达量显著升高。本研究初步发现甲基转移酶METTL21C具有促进家禽骨骼肌发育分化的作用,为骨骼肌发育的分子机理的研究及相关医学研究提供数据支持。  相似文献   

4.
本研究旨在研究KLFs家族6个成员(KLF3,KLF5,KLF7,KLF8,KLF9和KLF12)在山羊成肌细胞诱导分化过程中的表达模式及各个成员的相关性。利用qPCR检测KLFs在成肌细胞不同分化阶段中的表达丰度,并分析该家族成员间的相关性。结果显示,KLF3、KLF5、KLF7、KLF8、KLF9和KLF12在成肌细胞诱导分化过程中的表达水平逐渐升高,在诱导分化96 h的表达水平均极显著高于未诱导细胞中的表达水平(p0.01);相关性分析结果显示6个成员mRNA表达水平存在极显著相关(p0.01)。本研究明确了KLF3、KLF5、KLF7、KLF8、KLF9和KLF12在山羊成肌细胞诱导分化过程中的表达模式,为阐明该家族在山羊肌肉生长发育中的调控作用提供重要的基础数据。  相似文献   

5.
为研究脑信号蛋白家族(Semaphorins)成员Sema7A对成肌细胞增殖和分化的影响,本文设计并合成了Sema7A基因的小干扰RNA(small interfering RNA,siRNA),用此siRNA转染C2C12成肌细胞.通过Hoechst核染和流式细胞术检测细胞增殖情况,免疫荧光检测肌管的形成情况,real-time qPCR和Western印迹技术检测成肌标记基因的变化.结果显示,干扰Sema7A后,C2C12成肌细胞增殖减慢,处在G2和S期的细胞所占的比例明显下降,而G1期细胞的比例升高.免疫荧光检测结果显示,干扰Sema7A后,肌管的直径及MyHC+细胞所占比例均显著降低.Real-time qPCR和Western印迹结果也显示,肌肉分化标志基因MyoD、MyoG、MyHC的mRNA及蛋白质表达均下降.进一步检测Sema7A受体下游信号通路发现,干扰Sema7A后,其下游信号分子PI3K和AKT的磷酸化水平被下调.以上结果表明,Sema7A可以调节C2C12成肌细胞的增殖和分化,可能是通过其受体作用于PI3K/AKT信号通路实现的,这为进一步研究Sema7A在骨骼肌发育中的作用提供实验基础.  相似文献   

6.
《遗传》2019,(12)
猪骨骼肌发育是一个复杂的生物学过程,其中骨骼肌卫星细胞分化是影响骨骼肌发育的重要环节。近年来发现长链非编码RNA (long non-coding RNA, lncRNA)在骨骼肌卫星细胞分化中具有重要作用。为探究lncRNA TCONS_00815878对猪骨骼肌卫星细胞分化的影响,本研究利用qRT-PCR技术检测出生7 d内大白仔猪6种组织(心脏、脾脏、肺脏、肾脏、背肌和腿肌)及从胚胎期到出生后5个不同时间点(35 d、45 d、55 d胚胎及产后第7 d和第200 d后腿肌肉组织) TCONS_00815878的表达情况;利用反义核苷酸(antisense oligonucleotides, ASO)在猪骨骼肌卫星细胞中敲低TCONS_00815878,检验分化标记基因MyoD、MyoG和MyHC表达情况;通过生物信息学分析预测TCONS_00815878靶基因,并利用DAVID软件在线预测其靶基因的功能与通路。结果表明:TCONS_00815878在猪心肌和腿肌中高表达;仔猪出生后7 d内,TCONS_00815878在猪肌肉组织中表达量不断升高,第7 d达到高峰;在猪骨骼肌卫星细胞增殖和分化过程中,TCONS_00815878在分化期表达量不断上升,且在分化30 h表达量达到峰值;敲低TCONS_00815878后,MyoD、MyoG和MyHC基因表达量降低,其中MyoD表达量显著下降(P0.05)。此外,功能预测结果发现,其靶基因富集到糖酵解和丙酮酸代谢等与骨骼肌卫星细胞分化相关的多个生物学过程。本研究推测,lncRNA TCONS_00815878可能对猪骨骼肌卫星细胞的分化起促进作用。  相似文献   

7.
[目的]旨在验证牛MyoD1与MSTN在表达调控上的相互作用.[方法]首先,以构建的pEGFP-N3-MyoD1和EGFP-N3-MSTN过表达载体,分别在两组关岭牛原代成肌细胞中过表达MyoD1和MSTN,细胞转染24h后,qRT-PCR检测并分析各处理组细胞中MyoD1和MSTN相比表达情况.其次,以海肾荧光载体p...  相似文献   

8.
MyoD基因是生肌调节因子MRFs家族的主要成员之一,是脊椎动物胚胎期肌肉发育的主导调控基因之一,对骨骼肌的形成和分化起主要作用。采用RT-PCR和RACE方法获得大口黑鲈MyoD基因的cDNA序列长为1 157bp,其中3'非编码区为314bp,开放阅读框长843bp,编码280个氨基酸。结构分析表明该肽链无信号肽,第1~110个氨基酸为MyoD基因的Basic区(碱性氨基酸区),第124~167个氨基酸为MyoD基因的HLH结构(螺旋环螺旋结构)。通过对比分析已知GenBank中其它脊椎动物MyoD基因发现,该基因编码的氨基酸肽链随动物由低等向高等进化有加长的趋势,且核苷酸以及推测的氨基酸同源性和动物之间的亲缘关系相一致;大口黑鲈MyoD基因的克隆为研究该基因打靶和鱼类肌肉发育调控机理奠定基础。  相似文献   

9.
染色质重塑与肌肉分化   总被引:1,自引:0,他引:1  
在真核生物中,基因组DNA是以染色质的状态存在和发挥作用的。目前的研究已经鉴定了多种可以调节染色质结构和功能的蛋白质和酶复合物,包括不依赖ATP的染色质修饰酶、依赖于ATP的染色质重塑复合物,以及募集DNA甲基化/去甲基化装置的核小体相关蛋白质复合物等。在骨骼肌分化过程中,MyoD家族和MEF2家族的转录因子起着重要作用。染色质修饰酶通过MyoD和MEF2介导的染色质重塑影响肌肉分化。  相似文献   

10.
生肌调节因子(MRFs)家族成员包括MRF4、Myf5、Myogenin和MyoD,是肌肉形成的关键控制因素,其作为一种转录因子在肌肉的发育分化过程中发挥重要作用。本研究通过RT-qPCR方法分析MRFs家族基因在翘嘴鳜成体中不同组织及器官的表达情况,阐明其在肌肉组织中的特异性表达。结果显示:MRFs家族基因在成体翘嘴鳜肌肉、心脏、肝脏、脾脏、肾脏、肠道和脑组织及器官中均检测到表达,且在肌肉中的表达量显著高于其他组织及器官中的表达量(p<0.05)。为研究生肌调节因子在翘嘴鳜肌肉发育过程中的作用提供了基础资料。  相似文献   

11.
The biological function of selenium (Se) is mainly elicited through Se-containing proteins. Selenoprotein W (SelW), one member of the selenoprotein family, is essential for the normal function of the skeletal muscle system. To investigate the possible relationship of Se in the process of differentiation in chicken myoblasts and the expression of SelW, the cultured chicken embryonic myoblasts were incubated with sodium selenite at different concentrations for 72?h, and then the mRNA levels of SelW and myogenic regulatory factors (MRFs) in myoblasts were determined at 12, 24, 48, and 72?h, respectively. Furthermore, the correlation between SelW mRNA expression and MRF mRNA expression was assessed. The results showed that the sodium selenite medium enhanced the mRNA expression of SelW, Myf-5, MRF4, and myogenin in chicken myoblasts. The mRNA expression levels of MRFs were significantly correlated with those of SelW at 24, 48, and 72?h. These data demonstrate that Se is involved in the differentiation of chicken embryonic myoblasts, and SelW showed correlation with MRFs.  相似文献   

12.
13.
Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.  相似文献   

14.
Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号