首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth properties and antigenic relatedness of the CAN98-75 (CAN75) and the CAN97-83 (CAN83) human metapneumovirus (HMPV) strains, which represent the two distinct HMPV genetic lineages and exhibit 5 and 63% amino acid divergence in the fusion (F) and attachment (G) proteins, respectively, were investigated in vitro and in rodents and nonhuman primates. Both strains replicated to high titers (> or =6.0 log(10)) in the upper respiratory tract of hamsters and to moderate titers (> or =3.6 log(10)) in the lower respiratory tract. The two lineages exhibited 48% antigenic relatedness based on reciprocal cross-neutralization assay with postinfection hamster sera, and infection with each strain provided a high level of resistance to reinfection with the homologous or heterologous strain. Hamsters immunized with a recombinant human parainfluenza virus type 1 expressing the fusion F protein of the CAN83 strain developed a serum antibody response that efficiently neutralized virus from both lineages and were protected from challenge with either HMPV strain. This result indicates that the HMPV F protein is a major antigenic determinant that mediates extensive cross-lineage neutralization and protection. Both HMPV strains replicated to low titers in the upper and lower respiratory tracts of rhesus macaques but induced high levels of HMPV-neutralizing antibodies in serum effective against both lineages. The level of HMPV replication in chimpanzees was moderately higher, and infected animals developed mild colds. HMPV replicated the most efficiently in the respiratory tracts of African green monkeys, and the infected animals developed a high level of HMPV serum-neutralizing antibodies (1:500 to 1:1,000) effective against both lineages. Reciprocal cross-neutralization assays in which postinfection sera from all three primate species were used indicated that CAN75 and CAN83 are 64 to 99% related antigenically. HMPV-infected chimpanzees and African green monkeys were highly protected from challenge with the heterologous HMPV strain. Taken together, the results from hamsters and nonhuman primates support the conclusion that the two HMPV genetic lineages are highly related antigenically and are not distinct antigenic subtypes or subgroups as defined by reciprocal cross-neutralization in vitro.  相似文献   

2.
Recombinant human metapneumovirus (HMPV) in which the SH, G, or M2 gene or open reading frame was deleted by reverse genetics was evaluated for replication and vaccine efficacy following topical administration to the respiratory tract of African green monkeys, a permissive primate host. Replication of the deltaSH virus was only marginally less efficient than that of wild-type HMPV, whereas the deltaG and deltaM2-2 viruses were reduced sixfold and 160-fold in the upper respiratory tract and 3,200-fold and 4,000-fold in the lower respiratory tract, respectively. Even with the highly attenuated mutants, there was unequivocal HMPV replication at each anatomical site in each animal. Thus, none of these three proteins is essential for HMPV replication in a primate host, although G and M2-2 increased the efficiency of replication. Each gene-deletion virus was highly immunogenic and protective against wild-type HMPV challenge. The deltaG and deltaM2-2 viruses are promising vaccine candidates that are based on independent mechanisms of attenuation and are appropriate for clinical evaluation.  相似文献   

3.
Human metapneumovirus (HMPV) has recently been identified as a significant cause of serious respiratory tract disease in humans. In particular, the emerging information on the contribution of HMPV to pediatric respiratory tract disease suggests that it will be important to develop a vaccine against this virus for use in conjunction with those being developed for human respiratory syncytial virus and the human parainfluenza viruses. A recently described reverse genetic system (S. Biacchesi, M. H. Skiadopoulos, K. C. Tran, B. R. Murphy, P. L. Collins, and U. J. Buchholz, Virology 321:247-259, 2004) was used to generate recombinant HMPVs (rHMPVs) that lack the G gene, the SH gene, or both. The DeltaSH, DeltaG, and DeltaSH/G deletion mutants were readily recovered and were found to replicate efficiently during multicycle growth in cell culture. Thus, the SH and G proteins are not essential for growth in cell culture. Apart from the absence of the deleted protein(s), the virions produced by the gene deletion mutants were similar by protein yield and gel electrophoresis protein profile to wild-type HMPV. When administered intranasally to hamsters, the DeltaG and DeltaSH/G mutants replicated in both the upper and lower respiratory tracts, showing that HMPV containing F as the sole viral surface protein is competent for replication in vivo. However, both viruses were at least 40-fold and 600-fold restricted in replication in the lower and upper respiratory tract, respectively, compared to wild-type rHMPV. They also induced high titers of HMPV-neutralizing serum antibodies and conferred complete protection against replication of wild-type HMPV challenge virus in the lungs. Surprisingly, G is dispensable for protection, and the DeltaG and DeltaSH/G viruses represent promising vaccine candidates. In contrast, DeltaSH replicated somewhat more efficiently in hamster lungs compared to wild-type rHMPV (20-fold increase on day 5 postinfection). This indicates that SH is completely dispensable in vivo and that its deletion does not confer an attenuating effect, at least in this rodent model.  相似文献   

4.
5.
An in vivo ferret model was used to study the association of Staphylococcus aureus with specific tissues of the nasal cavity in both control and influenza A virus-infected animals. Ferrets were inoculated intranasally with various doses of influenza A3/Hong Kong/1/68 virus. On Days 2, 5, 9 and 14, four or five virus-inoculated and two uninoculated controls were challenged intranasally with a 1-ml volume of radiolabeled S. aureus (3 mg dry wt), a clinical isolate of low passage history. Ferrets were allowed to clear the staphylococci in vivo for 60 to 90 min before sacrifice. The animals were anesthetized, exsanguinated, and decapitated, and the lower jaw was removed. The nasal fossae were exposed by dissection and turbinates from the left nasal fossa were used for virus isolation. The median septum and tissues from the right nasal fossa, which included vestibule and anterior and posterior turbinates, were harvested and processed for radioassay. The percentage of recoverable staphylococci from virus-infected ferrets (Days 2 and 5) was greater than or equal to 10-fold higher compared with controls and animals infected with suboptimal doses of virus; greater than or equal to 76% of the recoverable staphylococci, whether from controls or virus-infected animals, was associated with the anterior turbinates. Histologic examination of the anterior turbinates from virus-infected ferrets, particularly on Days 2 and 5 postexposure to virus, showed that the staphylococci were adhering to desquamating respiratory epithelial cells. In contrast, the anterior turbinates from control ferrets uninoculated with virus and posterior turbinates from both control and virus-infected animals showed no evidence of bacteria adhering to host cells; instead, the staphylococci were found in association with the mucus gel layer of respiratory mucosa. Examination of vestibular tissue showed staphylococci in association with cells of the stratum granulosum in both virus-infected and control animals. Results of this study suggest that the early events of S. aureus interaction with different sites of ferret nasal tissues are effected by different mechanisms, and that the interaction is significantly enhanced by virus-infection.  相似文献   

6.
Chimeric versions of recombinant human metapneumovirus (HMPV) were generated by replacing the nucleoprotein (N) or phosphoprotein (P) open reading frame with its counterpart from the closely related avian metapneumovirus (AMPV) subgroup C. In Vero cells, AMPV replicated to an approximately 100-fold-higher titer than HMPV. Surprisingly, the N and P chimeric viruses replicated to a peak titer that was 11- and 25-fold higher, respectively, than that of parental HMPV. The basis for this effect is not known but was not due to obvious changes in the efficiency of gene expression. AMPV and the N and P chimeras were evaluated for replication, immunogenicity, and protective efficacy in hamsters. AMPV was attenuated compared to HMPV in this mammalian host on day 5 postinfection, but not on day 3, and only in the nasal turbinates. In contrast, the N and P chimeras were reduced approximately 100-fold in both the upper and lower respiratory tract on day 3 postinfection, although there was little difference by day 5. The N and P chimeras induced a high level of neutralizing serum antibodies and protective efficacy against HMPV; AMPV was only weakly immunogenic and protective against HMPV challenge, reflecting antigenic differences. In African green monkeys immunized intranasally and intratracheally, the mean peak titer of the P chimera was reduced 100- and 1,000-fold in the upper and lower respiratory tracts, whereas the N chimera was reduced only 10-fold in the lower respiratory tract. Both chimeras were comparable to wild-type HMPV in immunogenicity and protective efficacy. Thus, the P chimera is a promising live HMPV vaccine candidate that paradoxically combines improved growth in vitro with attenuation in vivo.  相似文献   

7.
8.
We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model.Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings.In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals.This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and morbidity arising from infection with HPAI H5N1 virus.  相似文献   

9.
10.
Varicella-zoster virus (VZV) open reading frame 63 (ORF63), located between nucleotides 110581 and 111417 in the internal repeat region, encodes a nuclear phosphoprotein which is homologous to herpes simplex virus type 1 (HSV-1) ICP22 and is duplicated in the terminal repeat region as ORF70 (nucleotides 118480 to 119316). We evaluated the role of ORFs 63 and 70 in VZV replication, using recombinant VZV cosmids and PCR-based mutagenesis to make single and dual deletions of these ORFs. VZV was recovered within 8 to 10 days when cosmids with single deletions were transfected into melanoma cells along with the three intact VZV cosmids. In contrast, VZV was not detected in transfections carried out with a dual deletion cosmid. Infectious virus was recovered when ORF63 was cloned into a nonnative AvrII site in this cosmid, confirming that failure to generate virus was due to the dual ORF63/70 deletion and that replication required at least one gene copy. This requirement may be related to our observation that ORF63 interacts directly with ORF62, the major immediate-early transactivating protein of VZV. ORF64 is located within the inverted repeat region between nucleotides 111565 and 112107; it has some homology to the HSV-1 Us10 gene and is duplicated as ORF69 (nucleotides 117790 to 118332). ORF64 and ORF69 were deleted individually or simultaneously using the VZV cosmid system. Single deletions of ORF64 or ORF69 yielded viral plaques with the same kinetics and morphology as viruses generated with the parental cosmids. The dual deletion of ORF64 and ORF69 was associated with an abnormal plaque phenotype characterized by very large, multinucleated syncytia. Finally, all of the deletion mutants that yielded recombinants retained infectivity for human T cells in vitro and replicated efficiently in human skin in the SCIDhu mouse model of VZV pathogenesis.  相似文献   

11.
12.
13.

Background

Human metapneumovirus and respiratory syncytial virus can cause severe respiratory diseases, especially in infants, young children, and the elderly. So far it remains unclear why infections in the elderly become life threatening despite the presence of neutralizing antibodies in the serum, and to which extent double infections worsen the clinical course.

Methods

Young and aged BALB/c-mice were infected with RSV or/and HMPV. Appearance of the mice was observed during course of infection. On day 5 p.i. animals were dispatched by cervical dislocation and levels of TNF-α and NF-κB were determined.

Results

The observation of activity, weight and appearance of the different mice showed no differences among the tested groups. Despite this, the immunologic response depends on the animals'' age and the virus they were infected with. In young animals, NF-κB levels were elevated if infected with HMPV and HMPV/RSV but remained low in RSV infections, whereas in aged animals the opposite was observed: solely RSV-infected animals showed elevated levels of NF-κB. TNF-α was slightly elevated in HMPV-infected young and old animals, but only in young animals this elevation was significant.

Conclusions

Contrary to other studies, no weight loss or change in activity despite productive lung infection with the different viruses were observed. This may be due to the weaker anaesthesia or the lesser volume of virus solution used, leading to less stress in the animals. The observed differences in TNF-α and NF-κB elevation lead to the assumption that young and old individuals have different mechanisms to react against the viruses.  相似文献   

14.
Baculovirus and vaccinia virus vectors were used to express the small (S) and medium (M) genome segments of Hantaan virus. Expression of the complete S or M segments yielded proteins electrophoretically indistinguishable from Hantaan virus nucleocapsid protein or envelope glycoproteins (G1 and G2), and expression of portions of the M segment, encoding either G1 or G2 alone, similarly yielded proteins which closely resembled authentic Hantaan virus proteins. The expressed envelope proteins retained all antigenic sites defined by a panel of monoclonal antibodies to Hantaan virus G1 and G2 and elicited antibodies in animals which reacted with authentic viral proteins. A Hantaan virus infectivity challenge model in hamsters was used to assay induction of protective immunity by the recombinant-expressed proteins. Recombinants expressing both G1 and G2 induced higher titer antibody responses than those expressing only G1 or G2 and protected most animals from infection with Hantaan virus. Baculovirus recombinants expressing only nucleocapsid protein also appeared to protect some animals from challenge. Passively transferred neutralizing monoclonal antibodies similarly prevented infection, suggesting that an antibody response alone is sufficient for immunity to Hantaan virus.  相似文献   

15.
Structural proteins of equine arteritis virus.   总被引:26,自引:13,他引:13       下载免费PDF全文
  相似文献   

16.
17.
18.
19.
20.
The ability of recombinant vaccinia viruses that separately encoded 9 of the 10 known respiratory syncytial virus (RSV) proteins to induce resistance to RSV challenge was studied in BALB/c mice. Resistance was examined at two intervals following vaccination to examine early (day 9) as well as late (day 28) immunity. BALB/c mice were inoculated simultaneously by the intranasal and intraperitoneal routes with a recombinant vaccinia virus encoding one of the following RSV proteins: F, G, N, P, SH, M, 1B, 1C, or M2 (22K). A parainfluenza virus type 3 HN protein recombinant (Vac-HN) served as a negative control. One half of the mice were challenged with RSV intranasally on day 9, and the remaining animals were challenged on day 28 postvaccination. Mice previously immunized by infection with RSV, Vac-F, or Vac-G were completely or almost completely resistant to RSV challenge on both days. In contrast, immunization with Vac-HN, -P, -SH, -M, -1B, or -1C did not induce detectable resistance to RSV challenge. Mice previously infected with Vac-M2 or Vac-N exhibited significant but not complete resistance on day 9. However, in both cases resistance had largely waned by day 28 and was detectable only in mice immunized with Vac-M2. These results demonstrate that F and G proteins expressed by recombinant vaccinia viruses are the most effective RSV protective antigens. This study also suggests that RSV vaccines need only contain the F and G glycoproteins, because the immunity conferred by the other proteins is less effective and appears to wane rapidly with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号