首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insecticidal activity of toxins CryIAa, CryIAb, and CryIAc against Lymantria dispar (gypsy moth) and Bombyx mori (silkworm) was examined by force-feeding bioassays. Toxin CryIAa exhibited higher toxicity than toxins CryIAb and CryIAc for L. dispar and B. mori. To evaluate possible synergism among these toxins, bioassays were performed with mixtures of CryIAa and CryIAb, CryIAb and CryIAc, and CryIAa and CryIAc. Expected toxicity was calculated from the activity of each individual toxin and its proportion in the mixture by using the equation described by Tabashnik (B. E. Tabashnik, Appl. Environ. Microbiol. 58:3343-3346, 1992). Observed 50% growth-inhibitory doses were calculated from mixing experiments by probit analysis. In L. dispar bioassays, synergism was observed with a mixture of CryIAa and CryIAc while a mixture of CryIAa and CryIAb exhibited an antagonistic effect. No synergistic effect on B. mori was observed with any toxin combination. Voltage clamping assays of isolated L. dispar midguts also demonstrated that the mixture of CryIAa and CryIAc induced a greater slope of inhibition of short circuit current than did other toxin combinations.  相似文献   

2.
We have evaluated the binding of Bacillus thuringiensis Cry toxins to aminopeptidase N (APN) purified from Lymantria dispar (gypsy moth) brush border membrane vesicle (BBMV). CryIAc toxin bound strongly to APN, while either the structurally related CryIAa and CryIAb toxins or CryIC, CryIIA, and CryIIIA toxins showed weak binding to APN. An in vitro competition binding study demonstrated that the binding of CryIAc to L. dispar BBMV was inhibited by APN. Inhibition of short circuit current for CryIAc, measured by voltage clamping of whole L. dispar midgut, was substantially reduced by addition of phosphatidylinositol-specific phospholipase C, which is known to release APN from the midgut membrane. In contrast, addition of phosphatidylinositol-specific phospholipase C had only a marginal effect on the inhibition of short circuit current for CryIAa. These data suggest that APN is the major functional receptor for CryIAc in L. dispar BBMV. A ligand blotting experiment demonstrated that CryIAc recognized a 120-kDa peptide (APN), while CryIAa and CryIAb recognized a 210-kDa molecule in L. dispar BBMV. In contrast, CryIAa and CryIAb bound to both the 120- and 210-kDa molecules in Manduca sexta BBMV, while CryIAc recognized only the 120-kDa peptide. The 120-kDa peptide (APN) in L. dispar BBMV reacted with soybean agglutinin, indicating that N-acetylgalactosamine is a component of this glycoprotein.  相似文献   

3.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

4.
Binding of the Bacillus thuringiensis Cry1Ac toxin to specific receptors in the midgut brush border membrane is required for toxicity. Alteration of these receptors is the most reported mechanism of resistance. We used a proteomic approach to identify Cry1Ac binding proteins from intestinal brush border membrane (BBM) prepared from Heliothis virescens larvae. Cry1Ac binding BBM proteins were detected in 2D blots and identified using peptide mass fingerprinting (PMF) or de novo sequencing. Among other proteins, the membrane bound alkaline phosphatase (HvALP), and a novel phosphatase, were identified as Cry1Ac binding proteins. Reduction of HvALP expression levels correlated directly with resistance to Cry1Ac in the YHD2-B strain of H. virescens. To study additional proteomic alterations in resistant H. virescens larvae, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) to compare three independent resistant strains with a susceptible strain. Our results validate the use of proteomic approaches to identify toxin binding proteins and proteome alterations in resistant insects.  相似文献   

5.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.  相似文献   

6.
Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with (125)I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ja bound to a common binding site that was not shared by the other toxins tested. Reciprocal competition experiments with Cry1Ab, Cry1Ac, and Cry1Ja showed that these toxins do not bind to any additional binding sites. In the resistant strain, binding of (125)I-Cry1Ac was not significantly affected; however, (125)I-Cry1Ab did not bind to the BBMV. This result, along with previous data from this strain, shows that the resistance fits the "mode 1" pattern of resistance described previously in Plutella xylostella, Plodia interpunctella, and Heliothis virescens.  相似文献   

7.
8.
To study the molecular basis of differences in the insecticidal spectrum of Bacillus thuringienesis delta-endotoxins, we have performed binding studies with three delta-endotoxins on membrane preparations from larval insect mid-gut. Conditions for a standard binding assay were established through a detailed study of the binding of 125I-labeled Bt2 toxin, a recombinant B. thuringiensis delta-endotoxin, to brush border membrane vesicles of Manduca sexta. The toxins tested (Bt2, Bt3 and Bt73 toxins) are about equally toxic to M. sexta but differ in their toxicity against Heliothis virescens. Equilibrium binding studies revealed saturable, high-affinity binding sites on brush border membrane vesicles of M. sexta and H. virescens. While the affinity of the three toxins was not significantly different on H. virescens vesicles, marked differences in binding site concentration were measured which reflected the differences in in vivo toxicity. Competition experiments revealed heterogeneity in binding sites. For H. virescens, a three-site model was proposed. In M. sexta, one population of binding sites is shared by all three toxins, while another is only recognized by Bt3 toxin. Several other toxins, non-toxic or much less toxic to M. sexta than Bt2 toxin, did not or only marginally displace binding of 125I-labeled Bt2 toxin in this insect. No saturable binding of this toxin was observed to membrane preparations from tissues of several non-susceptible organisms. Together, these data provide new evidence that binding to a specific receptor on the membrane of gut epithelial cells is an important determinant with respect to differences in insecticidal spectrum of B. thuringiensis insecticidal crystal proteins.  相似文献   

9.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

10.
H Lu  F Rajamohan    D H Dean 《Journal of bacteriology》1994,176(17):5554-5559
Alanine substitution (A3) or deletion (D3) of residues 365 to 371 of Bacillus thuringiensis CryIAa insect toxin removed nearly all toxicity for Bombyx mori (> 1,000-fold less active than the wild type). The loss of larvicidal activity in the mutants was not caused by increased sensitivity to larval gut enzymes but could be attributed to significantly reduced binding to B. mori brush border membrane vesicles. Some or all of the affected amino acid residues may interact directly or indirectly with the B. mori membrane receptor(s). Such receptor binding appears to be directly correlated with insect toxicity.  相似文献   

11.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

12.
Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.  相似文献   

13.
Retrotransposon-mediated disruption of the BtR-4 gene encoding the Heliothis virescens cadherin-like protein (HevCaLP) is linked to high levels of resistance in the YHD2 strain to Cry1Ac toxin from Bacillus thuringiensis. This suggests that HevCaLP functions as a Cry1Ac toxin receptor on the surface of midgut cells in susceptible larvae and that the BtR-4 gene disruption eliminates this protein in resistant larvae. However, Cry1Ac toxin binding to HevCaLP is yet to be reported. We used the polymerase chain reaction and immunoblotting as tools to discriminate between individual H. virescens larval midguts from susceptible (YDK) and resistant (CXC, KCBhyb, and YHD2-B) strains according to their BtR-4 gene disruption genotype and phenotype. This approach allowed us to test the correlation between BtR-4 gene disruption, lack of HevCaLP, and altered Cry1A toxin binding. Toxin-binding assays using brush border membrane vesicles revealed that a wild-type BtR-4 allele is necessary for HevCaLP production and Cry1Aa toxin binding, while most of Cry1Ab and Cry1Ac binding was independent of the BtR-4 genotype. Moreover, toxin competition experiments show that KCBhyb midguts lacking HevCaLP are more similar to midguts of the original YHD2 strain than to the current YHD2-B strain. This resolves discrepancies in published studies of Cry1A binding in YHD2 and supports our earlier suggestion that a separate genetic change occurred in YHD2 after appearance of the cadherin disruption, conferring even higher resistance in the resulting YHD2-B strain as well as a large reduction in Cry1Ab and Cry1Ac binding.  相似文献   

14.
Cry1Ab toxin binding analysis was performed to determine whether resistance in laboratory-selected Ostrinia nubilalis strains is associated with target site alteration. Brush border membrane vesicles were prepared using dissected midguts from late instars of susceptible and resistant strains (Europe-R and RSTT) of O. nubilalis. Immunoblot analysis indicated that three different proteins bound to Cry1Ab toxin and were recognized by an anticadherin serum. In a comparison of resistant and susceptible strains, reduced Cry1Ab binding was apparent for all three bands corresponding to cadherin-like proteins in the Europe-R strain, while reduced binding was apparent in only one band for the RSTT strain. Real-time analysis of Cry1Ab binding to gut receptors using surface plasmon resonance suggested slight differences in affinity in both resistant strains. Additional binding analysis was conducted using 125I-labeled Cry1Ab, Cry1Ac, and Cry1Aa. Slight differences were again observed between the resistant and susceptible strains for Cry1Ab binding. However, when binding of 125I-labeled Cry1Aa was tested, a 10-fold reduction in the concentration of binding sites was observed in the Europe-R strain. Expression of the O. nubilalis cadherin gene was similar in both the resistant and susceptible strains and did not account for differences in binding. In combination, the results of the present work suggest that differences in susceptibility to Cry1A toxins in the Europe-R strain of O. nubilalis are associated with altered receptor binding, although the precise nature of this mechanism is still uncertain.  相似文献   

15.
We reported previously a direct correlation between reduced soybean agglutinin binding to 63- and 68-kDa midgut glycoproteins and resistance to Cry1Ac toxin from Bacillus thuringiensis in the tobacco budworm (Heliothis virescens). In the present work we describe the identification of the 68-kDa glycoprotein as a membrane-bound form of alkaline phosphatase we term HvALP. Lectin blot analysis of HvALP revealed the existence of N-linked oligosaccharides containing terminal N-acetylgalactosamine required for [125I]Cry1Ac binding in ligand blots. Based on immunoblotting and alkaline phosphatase activity detection, reduced soybean agglutinin binding to HvALP from Cry1Ac resistant larvae of the H. virescens YHD2 strain was attributable to reduced amounts of HvALP in resistant larvae. Quantification of specific alkaline phosphatase activity in brush border membrane proteins from susceptible (YDK and F1 generation from backcrosses) and YHD2 H. virescens larvae confirmed the observation of reduced HvALP levels. We propose HvALP as a Cry1Ac binding protein that is present at reduced levels in brush border membrane vesicles from YHD2 larvae.  相似文献   

16.
17.
18.
Deletion of amino acid residues 370 to 375 (D2) and single alanine substitutions between residues 371 and 375 (FNIGI) of lepidopteran-active Bacillus thuringiensis CryIAb delta-endotoxin were constructed by site-directed mutagenesis techniques. All mutants, except that with the I-to-A change at position 373 (I373A), produced delta-endotoxin as CryIAb and were stable upon activation either by Manduca sexta gut enzymes or by trypsin. Mutants D2, F371A, and G374A lost most of the toxicity (400 times less) for M. sexta larvae, whereas N372A and I375A were only 2 times less toxic than CryIAb. The results of homologous and heterologous competition binding assays to M. sexta midgut brush border membrane vesicles (BBMV) revealed that the binding curves for all mutant toxins were similar to those for the wild-type toxin. However, a significant difference in irreversible binding was observed between the toxic (CryIAb, N372A, and I375A) and less-toxic (D2, F371A, and G374A) proteins. Only 20 to 25% of bound, radiolabeled CryIAb, N372A, and I375A toxins was dissociated from BBMV, whereas about 50 to 55% of the less-toxic mutants, D2, F371A, and G374A, was dissociated from their binding sites by the addition of excess nonlabeled ligand. Voltage clamping experiments provided further evidence that the insecticidal property (inhibition of short-circuit current across the M. sexta midgut) was directly correlated to irreversible interaction of the toxin with the BBMV. We have also shown that CryIAb and mutant toxins recognize 210- and 120-kDa peptides in ligand blotting. Our results imply that mutations in residues 370 to 375 of domain II of CrylAb do not affect overall binding but do affect the irreversible association of the toxin to the midgut columnar epithelial cells of M. sexta.  相似文献   

19.
Immunoblotting and cytochemical procedures were used to determine whether toxin binding was altered in strains of the Indianmeal moth, Plodia interpunctella, selected for resistance to various strains of Bacillus thuringiensis. Each of these B. thuringiensis subspecies produces a mixture of protoxins, primarily Cry1 types, and the greatest insect resistance is to the Cry1A protoxins. In several cases, however, there was also resistance to toxins not present in the B. thuringiensis strains used for selection. The Cry1Ab and Cry1Ac toxins bound equally well over a range of toxin concentrations and times of incubation to a single protein of ca. 80-kDa in immunoblots of larval membrane extracts from all of the colonies. This binding protein is essential for toxicity since a mutant Cry1Ac toxin known to be defective in binding and thus less toxic bound poorly to the 80-kDa protein. This binding protein differed in size from the major aminopeptidase N antigens implicated in toxin binding in other insects. Binding of fluorescently labeled Cry1Ac or Cry1Ab toxin to larval sections was found at the tips of the brush border membrane prepared from the susceptible but not from any of the resistant P. interpunctella. Accessibility of a major Cry1A-binding protein appears to be altered in resistant larvae and could account for their broad resistance to several B. thuringiensis toxins.  相似文献   

20.
Cry1Ab toxin binding analysis was performed to determine whether resistance in laboratory-selected Ostrinia nubilalis strains is associated with target site alteration. Brush border membrane vesicles were prepared using dissected midguts from late instars of susceptible and resistant strains (Europe-R and RSTT) of O. nubilalis. Immunoblot analysis indicated that three different proteins bound to Cry1Ab toxin and were recognized by an anticadherin serum. In a comparison of resistant and susceptible strains, reduced Cry1Ab binding was apparent for all three bands corresponding to cadherin-like proteins in the Europe-R strain, while reduced binding was apparent in only one band for the RSTT strain. Real-time analysis of Cry1Ab binding to gut receptors using surface plasmon resonance suggested slight differences in affinity in both resistant strains. Additional binding analysis was conducted using 125I-labeled Cry1Ab, Cry1Ac, and Cry1Aa. Slight differences were again observed between the resistant and susceptible strains for Cry1Ab binding. However, when binding of 125I-labeled Cry1Aa was tested, a 10-fold reduction in the concentration of binding sites was observed in the Europe-R strain. Expression of the O. nubilalis cadherin gene was similar in both the resistant and susceptible strains and did not account for differences in binding. In combination, the results of the present work suggest that differences in susceptibility to Cry1A toxins in the Europe-R strain of O. nubilalis are associated with altered receptor binding, although the precise nature of this mechanism is still uncertain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号