首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Activation of the spliceosome for splicing catalysis requires the dissociation of U4 snRNA from the U4/U6 snRNA duplex prior to the first step of splicing. We characterize an evolutionarily conserved 15.5 kDa protein of the HeLa [U4/U6.U5] tri-snRNP that binds directly to the 5' stem-loop of U4 snRNA. This protein shares a novel RNA recognition motif with several RNP-associated proteins, which is essential, but not sufficient for RNA binding. The 15.5kD protein binding site on the U4 snRNA consists of an internal purine-rich loop flanked by the stem of the 5' stem-loop and a stem comprising two base pairs. Addition of an RNA oligonucleotide comprising the 5' stem-loop of U4 snRNA (U4SL) to an in vitro splicing reaction blocked the first step of pre-mRNA splicing. Interestingly, spliceosomal C complex formation was inhibited while B complexes accumulated. This indicates that the 15.5kD protein, and/or additional U4 snRNP proteins associated with it, play an important role in the late stage of spliceosome assembly, prior to step I of splicing catalysis. Our finding that the 15.5kD protein also efficiently binds to the 5' stem-loop of U4atac snRNA indicates that it may be shared by the [U4atac/U6atac.U5] tri-snRNP of the minor U12-type spliceosome.  相似文献   

2.
The human 15.5K protein binds to the 5' stem-loop of U4 snRNA, promotes the assembly of the spliceosomal U4/U6 snRNP, and is required for the recruitment of the 61K protein and the 20/60/90K protein complex to the U4 snRNA. In the crystallographic structure of the 15.5K-U4 snRNA complex, the conformation of the RNA corresponds to the family of kink-turn (K-turn) structural motifs. We simulated the complex and the free RNA, showing how the protein binding and the intrinsic flexibility contribute to the RNA folding process. We found that the RNA is significantly more flexible in the absence of the 15.5K protein. Conformational transitions such as the interconversion between alternative purine stacking schemes, the loss of G-A base pairs, and the opening of the K-turn occur only in the free RNA. Furthermore, the stability of one canonical G-C base pair is influenced both by the binding of the 15.5K protein and the nature of the adjacent structural element in the RNA. We performed chemical RNA modification experiments and observed that the free RNA lacks secondary structure elements, a result in excellent agreement with the simulations. Based on these observations, we propose a protein-assisted RNA folding mechanism in which the RNA intrinsic flexibility functions as a catalyst.  相似文献   

3.
The 15.5K protein directly binds to the 5' stem-loop of the U4 small nuclear RNA, the small nucleolar (sno) RNA box C/D motif, and the U3 snoRNA-specific box B/C motif. The box B/C motif has also been shown to be essential for the association of the U3 small nucleolar ribonucleoprotein-specific protein hU3-55K. We therefore set out to determine how 15.5K and hU3-55K recognize the box B/C motif. By using an in vitro assembly assay, we show that hU3-55K effectively binds a sub-fragment of the U3 snoRNA surrounding the B/C motif that we have named the U3BC RNA. The association of hU3-55K with the U3BC RNA is dependent on the binding of 15.5K to the box B/C motif. The association of hU3-55K with the U3BC RNA was found to be also dependent on a conserved RNA structure that flanks the box B/C motif. Furthermore, we show that hU3-55K, a WD 40 repeat containing protein, directly cross-links to the U3BC RNA. Our data support a new structural model of the box B/C region of the U3 snoRNA in which the box B/C motif is base-paired to form a structure highly similar to that of both the U4 5' stem-loop and the box C/D motif.  相似文献   

4.
The kink-turn, a stem I-internal loop-stem II structure of the 5 ' stem-loop of U4 and U4atac small nuclear (sn) RNAs bound by 15.5K protein is required for binding of human Prp31 protein (hPrp31) during U4 and U4atac snRNP assembly. In box C/D snoRNPs a similar kink-turn with bound 15.5K protein is required for selective binding of proteins NOP56 and NOP58. Here we analyzed RNA structural requirements for association of hPrp31 with U4 snRNP in vitro by hydroxyl radical footprinting. hPrp31 induced protection of the terminal penta-loop, as well as of stems I and II flanking the kink-turn. Similar protection was found with U4/U6 snRNA duplex prebound with 15.5K protein. A detailed mutational analysis of the U4 snRNA elements by electrophoretic mobility shift analysis revealed that stem I could not be shortened, although it tolerated sequence alterations. However, introduction of a third Watson-Crick base pair into stem II significantly reduced hPrp31 binding. While stem I of U4atac snRNA showed relaxed binding requirements, its stem II requirements were likewise restricted to two base pairs. In contrast, as shown previously, stem II of the kink-turn motif in box C/D snoRNAs is comprised of three base pairs, and NOP56 and NOP58 require a G-C pair at the central position. This indicates that hPrp31 binding specificity is achieved by the recognition of the two base pair long stem II of the U4 and U4atac snRNAs and suggests how discrimination is achieved by RNA structural elements during assembly of U4/U6 and U4atac/U6atac snRNPs and box C/D snoRNPs.  相似文献   

5.
Selenoprotein synthesis in eukaryotes requires the selenocysteine insertion sequence (SECIS) RNA, a hairpin in the 3' untranslated region of selenoprotein mRNAs. The SECIS RNA is recognized by the SECIS-binding protein 2 (SBP2), which is a key player in this specialized translation machinery. The objective of this work was to obtain structural insight into the SBP2-SECIS RNA complex. Multiple sequence alignment revealed that SBP2 and the U4 snRNA-binding protein 15.5 kD/Snu13p share the same RNA binding domain of the L7A/L30 family, also found in the box H/ACA snoRNP protein Nhp2p and several ribosomal proteins. In corollary, we have detected a similar secondary structure motif in the SECIS and U4 RNAs. Combining the data of the crystal structure of the 15.5 kD-U4 snRNA complex, and the SBP2/15.5 kD sequence similarities, we designed a structure-guided strategy predicting 12 SBP2 amino acids that should be critical for SECIS RNA binding. Alanine substitution of these amino acids followed by gel shift assays of the SBP2 mutant proteins identified four residues whose mutation severely diminished or abolished SECIS RNA binding, the other eight provoking intermediate down effects. In addition to identifying key amino acids for SECIS recognition by SBP2, our findings led to the proposal that some of the recognition principles governing the 15.5 kD-U4 snRNA interaction must be similar in the SBP2-SECIS RNA complex.  相似文献   

6.
Replication-dependent histone mRNAs end in a highly conserved 26-nt stem-loop structure. The stem-loop binding protein (SLBP), an evolutionarily conserved protein with no known homologs, interacts with the stem-loop in both the nucleus and cytoplasm and mediates nuclear-cytoplasmic transport as well as 3'-end processing of the pre-mRNA by the U7 snRNP. Here, we examined the affinity and specificity of the SLBP-RNA interaction. Nitrocellulose filter-binding experiments showed that the apparent equilibrium dissociation constant (Kd) between purified SLBP and the stem-loop RNA is 1.5 nM. Binding studies with a series of stem-loop variants demonstrated that conserved residues in the stem and loop, as well as the 5' and 3' flanking regions, are required for efficient protein recognition. Deletion analysis showed that 3 nt 5' of the stem and 1 nt 3' of the stem contribute to the binding energy. These data reveal that the high affinity complex between SLBP and the RNA involves sequence-specific contacts to the loop and the top of the stem, as well the base of the stem and its immediate flanking sequences. Together, these results suggest a novel mode of protein-RNA recognition that forms the core of a ribonucleoprotein complex central to the regulation of histone gene expression.  相似文献   

7.
8.
9.
U4atac snRNA forms a base-paired complex with U6atac snRNA. Both snRNAs are required for the splicing of the minor U12-dependent class of eukaryotic nuclear introns. We have developed a new genetic suppression assay to investigate the in vivo roles of several regions of U4atac snRNA in U12-dependent splicing. We show that both the stem I and stem II regions, which have been proposed to pair with U6atac snRNA, are required for in vivo splicing. Splicing activity also requires U4atac sequences in the 5' stem-loop element that bind a 15.5 kDa protein that also binds to a similar region of U4 snRNA. In contrast, mutations in the region immediately following the stem I interaction region, as well as a deletion of the distal portion of the 3' stem-loop element, were active for splicing. Complete deletion of the 3' stem-loop element abolished in vivo splicing function as did a mutation of the Sm protein binding site. These results show that the in vivo sequence requirements of U4atac snRNA are similar to those described previously for U4 snRNA using in vitro assays and provide experimental support for models of the U4atac/U6atac snRNA interaction.  相似文献   

10.
The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate the formation of the U4/U6 Y-shaped structure. In the human tri-snRNP and U4/U6 snRNP, U6 forms the long range interaction, that was previously proposed to be responsible for dissociation of the deproteinized U4/U6 duplex. In both yeast and human tri-snRNPs, U5 is more protected than U4 and U6, suggesting that the U5 snRNP-specific protein complex and other components of the tri-snRNP wrapped the 5' stem-loop of U5. Loop I of U5 is partially accessible, and chemical modifications of loop I were identical in yeast and human tri-snRNPs. This reflects a strong conservation of the interactions of proteins with the functional loop I. Only some parts of the U4/U6 Y-shaped motif (the 5' stem-loop of U4 and helix II) are protected. Due to difference of protein composition of yeast and human tri-snRNP, the U6 segment linking the 5' stem-loop to the Y-shaped structure and the U4 central single-stranded segment are more accessible in the yeast than in the human tri-snRNP, especially, the phylogenetically conserved ACAGAG sequence of U6. Data are discussed taking into account knowledge on RNA and protein components of yeast and human snRNPs and their involvement in splicesome assembly.  相似文献   

11.
Specific protein-RNA complexes are formed by incubating a synthetic histone mRNA 3' end (a 30 nucleotide stem-loop structure) RNA with extracts of either nuclei or polyribosomes. The complex formed between the stem-loop and nuclear proteins has a lower electrophoretic mobility than the complex formed between the stem-loop and polyribosomal proteins. Binding of the synthetic 3' end by both polyribosomal and nuclear proteins is abolished when two of the conserved uridine residues in the loop are replaced with adenosines. UV crosslinking of the protein complexes to the synthetic RNA resulted in transferring radiolabel to similar sized proteins, 50 kD, in both the nuclear and polyribosomal extracts.  相似文献   

12.
Immunoaffinity-purified human 25S [U4/U6.U5] tri-snRNPs harbor a set of polypeptides, termed the tri-snRNP proteins, that are not present in Mono Q-purified 20S U5 snRNPs or 10S U4/U6 snRNPs and that are important for tri-snRNP complex formation (Behrens SE, Lührmann R, 1991, Genes & Dev 5:1439-1452). Biochemical and immunological characterization of HeLa [U4/U6.U5] tri-snRNPs led to the identification of two novel proteins with molecular weights of 61 and 63kD that are distinct from the previously described 15.5, 20, 27, 60, and 90kD tri-snRNP proteins. For the initial characterization of tri-snRNP proteins that interact directly with U4/U6 snRNPs, immunoaffinity chromatography with an antibody directed against the 60kD protein was performed. We demonstrate that the 60 and 90kD tri-snRNP proteins specifically associate with the U4/U6 snRNP at salt concentrations where the tri-snRNP complex has dissociated. The primary structures of the 60kD and 90kD proteins were determined by cloning and sequencing their respective cDNAs. The U4/U6-60kD protein possesses a C-terminal WD domain that contains seven WD repeats and thus belongs to the WD-protein family, whose best-characterized members include the Gbeta subunits of heterotrimeric G proteins. A database homology search revealed a significant degree of overall homology (57.8% similarity, 33.9% identity) between the human 60kD protein and the Saccharomyces cerevisiae U4/U6 snRNP protein Prp4p. Two additional, previously undetected WD repeats (with seven in total) were also identified in Prp4p, consistent with the possibility that 60kD/Prp4p, like beta-transducin, may adopt a propeller-like structure. The U4/U6-90kD protein was shown to exhibit significant homology, particularly in its C-terminal half, with the S. cerevisiae splicing factor Prp3p, which also associates with the yeast U4/U6 snRNP. Interestingly, U4/U6-90kD shares short regions of homology with E. coli RNase III, including a region encompassing its double-stranded RNA binding domain. Based on their structural similarity with essential splicing factors in yeast, the human U4/U6-60kD and 90kD proteins are likely also to play important roles in the mammalian splicing process.  相似文献   

13.
We have defined the nucleotide sequence of a protein-binding domain within U1 RNA that specifically recognizes and binds both to a U1 small nuclear ribonucleoprotein component (the 70K protein) and to the previously defined RNA-binding domain of the 70K protein. We have investigated direct interactions between purified U1 RNA and 70K protein by reconstitution in vitro. Thirty-one nucleotides of U1 RNA, corresponding to stem-loop I, were required for this interaction. Nucleotides at the 5' end of U1 RNA that are involved in base pairing with the 5' splice site of pre-mRNA were not required for binding. In contrast to other reports, these findings demonstrate that a specific domain of U1 RNA can bind directly to the 70K protein independently of any other snRNP-associated proteins.  相似文献   

14.
15.
Human proteins 15.5K and hPrp31 are components of the major spliceosomal U4 snRNP and of the minor spliceosomal U4atac snRNP. The two proteins bind to related 5'-stem loops (5'SLs) of the U4 and U4atac snRNAs in a strictly sequential fashion. The primary binding 15.5K protein binds at K-turns that exhibit identical sequences in the two snRNAs. However, RNA sequences contacted by the secondary binding hPrp31 differ in U4 and U4atac snRNAs, and the mechanism by which hPrp31 achieves its dual specificity is presently unknown. We show by crystal structure analysis that the capping pentaloops of the U4 and U4atac 5'SLs adopt different structures in the ternary hPrp31-15.5K-snRNA complexes. In U4atac snRNA, a noncanonical base pair forms across the pentaloop, based on which the RNA establishes more intimate interactions with hPrp31 compared with U4 snRNA. Stacking of hPrp31-His270 on the noncanonical base pair at the base of the U4atac pentaloop recapitulates intramolecular stabilizing principles known from the UUCG and GNRA families of RNA tetraloops. Rational mutagenesis corroborated the importance of the noncanonical base pair and the U4atac-specific hPrp31-RNA interactions for complex stability. The more extensive hPrp31-U4atac snRNA interactions are in line with a higher stability of the U4atac compared with the U4-based ternary complex seen in gel-shift assays, which may explain how U4atac snRNA can compete with the more abundant U4 snRNA for the same protein partners in vivo.  相似文献   

16.
The 5' stem-loop of the U4 snRNA and the box C/D motif of the box C/D snoRNAs can both be folded into a similar stem-internal loop-stem structure that binds the 15.5K protein. The homologous proteins NOP56 and NOP58 and 61K (hPrp31) associate with the box C/D snoRNPs and the U4/U6 snRNP, respectively. This raises the intriguing question of how the two homologous RNP complexes specifically assemble onto similar RNAs. Here we investigate the requirements for the specific binding of the individual snoRNP proteins to the U14 box C/D snoRNPs in vitro. This revealed that the binding of 15.5K to the box C/D motif is essential for the association of the remaining snoRNP-associated proteins, namely, NOP56, NOP58, fibrillarin, and the nucleoplasmic proteins TIP48 and TIP49. Stem II of the box C/D motif, in contrast to the U4 5' stem-loop, is highly conserved, and we show that this sequence is responsible for the binding of NOP56, NOP58, fibrillarin, TIP48, and TIP49, but not of 15.5K, to the snoRNA. Indeed, the sequence of stem II was essential for nucleolar localization of U14 snoRNA microinjected into HeLa cells. Thus, the conserved sequence of stem II determines the specific assembly of the box C/D snoRNP.  相似文献   

17.
J M Dungan  K P Watkins    N Agabian 《The EMBO journal》1996,15(15):4016-4029
The existence of the Trypanosoma brucei 5' splice site on a small RNA of uniform sequence (the spliced leader or SL RNA) has allowed us to characterize the RNAs with which it interacts in vivo by psoralen crosslinking treatment. Analysis of the most abundant crosslinks formed by the SL RNA allowed us previously to identify the spliced leader-associated (SLA) RNA. The role of this RNA in trans-splicing, as well as the possible existence of an analogous RNA interaction in cis-splicing, is unknown. We show here that the 5' splice site region of the SL RNA is also crosslinked in vivo to a second small RNA. Although it is very small and lacks a 5' trimethylguanosine (TMG) cap, the SLA2RNA possesses counterparts of the conserved U5 snRNA stem-loop 1 and internal loop 1 sequence elements, as well as a potential trypanosome snRNA core protein binding site; these combined features meet the phylogenetic definition of U5 snRNA. Like U5, the SLA2 RNA forms an RNP complex with the U4 and U6 RNAs, and interacts with the 5' splice site region via its putative loop 1 sequence. In a final analogy with U5, the SLA2 RNA is found crosslinked to a molecule identical to the free 5' exon splicing intermediate. These data present a compelling case for the SLA2 RNA not only as an active trans-spliceosomal component, but also for its identification as the trypanosome U5 structural homolog. The presence of a U5-like RNA in this ancient eukaryote establishes the universality of the spliceosomal RNA core components.  相似文献   

18.
The box C/D snoRNAs function in directing 2'-O-methylation and/or as chaperones in the processing of ribosomal RNA. We show here that Snu13p (15.5 kD in human), a component of the U4/U6.U5 tri-snRNP, is also associated with the box C/D snoRNAs. Indeed, genetic depletion of Snu13p in yeast leads to a major defect in RNA metabolism. The box C/D motif can be folded into a stem-internal loop-stem structure, almost identical to the 15.5 kD binding site in the U4 snRNA. Consistent with this, the box C/D motif binds Snu13p/ 15.5 kD in vitro. The similarities in structure and function observed between the U4 snRNP (chaperone for U6) and the box C/D snoRNPs raises the interesting possibility that these particles may have evolved from a common ancestral RNP.  相似文献   

19.
U4 small nuclear RNA (snRNA) plays a fundamental role in the process of premessenger RNA splicing, yet many questions remain regarding the location, interactions, and roles of its functional domains. To address some of these questions, we developed the first in vitro reconstitution system for yeast U4 small nuclear ribonucleoproteins (snRNPs). We used this system to examine the functional domains of U4 by measuring reconstitution of splicing, U4/U6 base-pairing, and triple-snRNP formation. In contrast to previous work in human extracts and Xenopus oocytes, we found that the 3' stem-loop of U4 is necessary for efficient base-pairing with U6. In particular, the loop is sensitive to changes in both length and sequence. Intriguingly, a number of mutations that we tested resulted in more stable interactions with U6 than wild-type U4. Nevertheless, each of these mutants was impaired in its ability to support splicing, indicating that these regions of U4 have functions subsequent to base pair formation with U6. Our data suggest that one such function is likely to be in tri-snRNP formation, when U5 joins the U4/U6 di-snRNP. We have identified two regions, the upper stem of the 3' stem-loop and the central domain, that promote tri-snRNP formation. In addition, the loop of the 3' stem-loop promotes di-snRNP formation, while the central domain and the 3'-terminal domain appear to antagonize di-snRNP formation.  相似文献   

20.
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号