首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural Killer cells are immune cells that recognize and eliminate altered and non-self cells from the circulation. To study the interaction between NK cells and target cells, we set up an experimental system consisting of rat Interleukin-2 activated Natural Killer cells (A-NK cells) and rat hepatocytes with a masked Major Histocompatibility Complex (MHC). The masking of the MHC induces recognition of the hepatocytes by the NK cells as non-self. We showed that in vitro apoptosis is rapidly induced in the hepatocytes [Blom et al., 1999] after co-incubation with A-NK cells. Now we describe the morphological changes that occur during and after interaction of A-NK cells with hepatocytes. Confocal laser scanning microscopy showed that the actin cytoskeleton of the NK cells was remodeled during attack of hepatocytes. Some NK cells were in close contact with the hepatocytes while others had formed actin-containing dendrites of varying length that made contact with the hepatocytes. However, dendrite formation is not obligatory for induction of apoptosis because cells that were unable to form these did induce FAS-dependent apoptosis in hepatocytes. Apparently both direct as well as distant contact resulted in apoptosis. Formation of the dendrites was calcium-dependent as EGTA largely prevented it. Importantly, chelation of the calcium also suppressed killing of the hepatocytes. Within 1 h after addition of the A-NK cells, morphological changes in hepatocytes that are characteristic of apoptosis, such as the formation of apoptotic bodies and fragmented nuclei, became apparent. Specifically, the actin cytoskeleton of the hepatocytes was remodeled resulting in the formation of the apoptotic bodies. Inhibition of caspase activity by z-Val-Ala-DL-Asp-fluoromethylketone (100 microM) partly protected against the rearrangement of the actin filaments in the hepatocytes.  相似文献   

2.
AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca2+-dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.  相似文献   

3.
The sperm acrosome reaction and penetration of the egg follow zona pellucida binding only if the sperm has previously undergone the poorly understood maturation process known as capacitation. We demonstrate here that in vitro capacitation of bull, ram, mouse, and human sperm was accompanied by a time-dependent increase in actin polymerization. Induction of the acrosome reaction in capacitated cells initiated fast F-actin breakdown. Incubation of sperm in media lacking BSA or methyl-beta-cyclodextrin, Ca(2+), or NaHCO(3), components that are all required for capacitation, prevented actin polymerization as well as capacitation, as assessed by the ability of the cells to undergo the acrosome reaction. Inhibition of F-actin formation by cytochalasin D blocked sperm capacitation and reduced the in vitro fertilization rate of metaphase II-arrested mouse eggs. It has been suggested that protein tyrosine phosphorylation may represent an important regulatory pathway that is associated with sperm capacitation. We show here that factors known to stimulate sperm protein tyrosine phosphorylation (i.e., NaHCO(3), cAMP, epidermal growth factor, H(2)O(2), and sodium vanadate) were able to enhance actin polymerization, whereas inhibition of tyrosine kinases prevented F-actin formation. These data suggest that actin polymerization may represent an important regulatory pathway in with sperm capacitation, whereas F-actin breakdown occurs before the acrosome reaction.  相似文献   

4.
Lupeol induces the formation of dendrites in B16 2F2 melanoma cells. The remodeling of cytoskeletal components contributes to the dendricity of melanoma cells. We studied the effects of lupeol on the remodeling of cytoplasmic filaments in B16 2F2 cells. Western blotting revealed no change in the levels of actin and tubulin. Lupeol attenuated stress fiber assembly, but did not promote the remodeling of microtubular networks. We examined the activation of cofilin, an actin-depolymerizing factor, in lupeol-treated B16 2F2 cells by western blotting. The level of phospho-cofilin was found to decrease in a time-dependent manner. Inhibition of p38 MAPK by SB203580 blocked tyrosinase induction by lupeol, but did not influence the disruption of stress fiber assembly or the dephosphorylation of cofilin. Furthermore, we studied the effects of lupeol on cell migration. At 10 microM, lupeol markedly inhibited the haptotaxis of B16 2F2 cells to fibronectin. Additionally, lupeol strongly inhibited the migration of human melanoma and neuroblastoma cells, and weakly suppressed the migration of lung adenocarcinoma cells. However, lupeol did not affect the motility of other cancer cells. The results suggest that lupeol suppresses the migration of malignant melanoma cells by disassembling the actin cytoskeleton.  相似文献   

5.
The herbicide paraquat (PQ) induces the selective necrosis of type I and type II alveolar pneumocytes. We investigated the effect of PQ on human lung A549 cells to determine the possible role of cytoskeleton in lung cytotoxicity. At 80 mol/L PQ, a concentration that did not affect cell viability, the organization of actin cytoskeleton network depended on incubation time with the herbicide. Microfilaments appeared less numerous in 30% of the cells treated for 1 h. After 24 h, all the treated cells displayed only short filaments in the periphery. The effect of PQ on actin cytoskeleton was irreversible. Moreover, no modification of microtubule network was observed in PQ-treated cells. Next, we studied the effect of PQ on Chang Liver, an epithelial cell line from human liver. These cells appeared less sensitive to the herbicide than A549, and no cytoskeletal alteration was observed. To verify whether actin filament modifications in A549 cells were related to intracellular alterations of ATP concentrations, nucleotide levels during incubation with PQ were determined. The intracellular levels of ATP were not different in control and treated cells. Our results indicate that PQ induces specifically an irreversible actin filament disorganization on A549 cells and that the observed effect is independent of intracellular concentration of ATP.Abbreviations BSA bovine serum albumin - IC50 concentration that produces 50% inhibitiition - PBS phosphate-buffered saline - PQ paraquat, 1,1-dimethyl-4,4-bipyridinium dichloride - SE standard error of the mean  相似文献   

6.
Members of both calpain and caspase protease families can degrade several components of focal adhesions, leading to disassembly of these complexes. In this report, we investigated the disappearance of tensin from cell adhesion sites of chicken embryonic fibroblast cells (CEFs) exposed to etoposide and demonstrated that loss of tensin from cell adhesions during etoposide-induced apoptosis may be due to degradation of tensin by caspase-3. Tensin cleavage by caspase-3 at the sequence DYPD(1226)G separates the amino-terminal region containing the actin binding domain and the carboxyl-terminal region containing the SH2 domain. The resultant carboxyl-terminal fragment of tensin is unable to bind phosphoinositide 3-kinase (PI3-kinase) transducing cell survival signaling. We also demonstrated that overexpression of the amino-terminal tensin fragment induced disruption of actin cytoskeleton in chicken embryonic fibroblasts. Therefore, caspase-mediated cleavage of tensin contributes to the disruption of actin organization and interrupts ECM-mediated survival signals through phosphatidylinositol 3-kinase.  相似文献   

7.
Erythropoietin and stem cell factor are the key cytokines that regulate early stages of erythroid differentiation. However, it remains undetermined whether additional cytokines also play a role in the differentiation program. Here, we report that osteopontin (OPN) is highly expressed and secreted by erythroblasts during differentiation. We also demonstrate that OPN-deficient human and mouse erythroblasts exhibit defects in F-actin filaments, and addition of exogenous OPN to OPN-deficient erythroblasts restored the F-actin filaments in these cells. Furthermore, our studies demonstrate that OPN contributes to erythroblast proliferation. OPN knock-out male mice exhibit lower hematocrit and hemoglobin levels compared with their wild-type counterparts. We also show that OPN mediates phosphorylation or activation of multiple proteins including Rac-1 GTPase and the actin-binding protein, adducin, in human erythroblasts. In addition, we show that the OPN effects include regulation of intracellular calcium in human erythroblasts. Finally, we demonstrate that human erythroblasts express CD44 and integrins beta1 and alpha4, three known receptors for OPN, and that the integrin beta1 receptor is involved in transmitting the proliferative signal. Together these results provide evidence for signal transduction by OPN and contribution to multiple functions during the erythroid differentiation program in human and mouse.  相似文献   

8.
Sry induces cell proliferation in the mouse gonad   总被引:11,自引:0,他引:11  
Sry is the only gene on the Y chromosome that is required for testis formation in mammals. One of the earliest morphological changes that occurs as a result of Sry expression is a size increase of the rudimentary XY gonad relative to the XX gonad. Using 5'-bromo-2'-deoxyuridine (BrdU) incorporation to label dividing cells, we found that the size increase corresponds with a dramatic increase in somatic cell proliferation in XY gonads, which is not detected in XX gonads. This male-specific proliferation was observed initially in the cells of the coelomic epithelium and occurred in two distinct stages. During the first stage, proliferation in the XY gonad was observed largely in SF1-positive cells and contributed to the Sertoli cell population. During the second stage, proliferation was observed in SF1-negative cells at and below the coelomic epithelium and did not give rise to Sertoli cells. Both stages of proliferation were dependent on Sry and independent of any other genetic differences between male and female gonads, such as X chromosome dosage or other genes on the Y chromosome. The increase in cell proliferation began less than 24 hours after the onset of Sry expression, before the establishment of male-specific gene expression patterns, and before the appearance of any other known male-specific morphological changes in the XY gonad. Therefore, an increase in cell proliferation in the male coelomic epithelium is the earliest identified effect of Sry expression.  相似文献   

9.
10.
The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly.  相似文献   

11.
Shigella proteins that are targeted to host cells by a type III secretion apparatus are essential for reorganization of the cytoskeleton during cell invasion. We have developed a semi-permeabilized cell assay that tests the effects of bacterial proteins on the actin cytoskeleton. The Shigella IpaC protein was found to induce the formation of filopodial and lamellipodial extensions in these semi-permeabilized cells. Microinjection of IpaC into cells, or cellular expression of IpaC also led to the formation of filopodial structures. Monoclonal antibodies (mAbs) directed against the C-terminus of IpaC inhibited the IpaC-induced extensions, whereas an anti-N-terminal IpaC mAb stimulated extensive lamellae formation. Shigella induced foci of actin polymerization in the permeabilized cells and these were inhibited by anti-C-terminal IpaC mAbs. Consistent with a role for IpaC in Shigella-induced cytoskeletal rearrangements during entry, stable transfectants expressing IpaC challenged with Shigella showed increased bacterial internalization. IpaC-induced extensions were inhibited by a dominant-interfering form of Cdc42 or the Cdc42-binding domain of WASP, whereas a dominant-interfering form of Rac resulted in inhibition of lamellae formation. We conclude that IpaC leads to activation of Cdc42 which in turn, causes activation of Rac, both GTPases being required for Shigella entry.  相似文献   

12.
During sporulation in Saccharomyces cerevisiae, the four daughter cells (spores) are formed inside the boundaries of the mother cell. Here, we investigated the dynamics of spore assembly and the actin cytoskeleton during this process, as well as the requirements for filamentous actin during the different steps of spore formation. We found no evidence for a polarized actin cytoskeleton during sporulation. Instead, a highly dynamic network of non-polarized actin cables is present underneath the plasma membrane of the mother cell. We found that a fraction of prospore membrane (PSM) precursors are transported along the actin cables. The velocity of PSM precursors is diminished if Myo2p or Tpm1/2p function is impaired. Filamentous actin is not essential for meiotic progression, for shaping of the PSMs or for post-meiotic cytokinesis. However, actin is essential for spore wall formation. This requires the function of the Arp2/3p complex and involves large carbohydrate-rich compartments, which may be chitosome analogous structures.  相似文献   

13.
A cloned human cardiac actin gene, introduced into mouse Ltk- cells, is expressed in several thymidine kinase (tk)-positive cotransfectants. The clones not only produce authentic polyadenylated human cardiac actin mRNA but also synthesize human cardiac actin protein. The cardiac actin protein, normally found only in myofibrils, is stably accumulated at a high level, about one-third that of the endogenous mouse beta-actin. Furthermore, this sarcomeric protein partitions between the Triton X-100 insoluble and soluble phases to the same extent as the endogenous beta-actin. This suggests that a sarcomeric actin can participate in the formation of Triton X-100-insoluble cytoskeletal structures.  相似文献   

14.
The development of the skull is characterised by its dependence upon epigenetic influences. One of the most important of these is secondary chondrogenesis, which occurs following ossification within certain membrane bone periostea, as a result of biomechanical articulation. We have studied the genesis, character and function of the secondary chondrocytes of the quadratojugal of the chick between embryonic days 11 and 14. Analysis of gene expression revealed that secondary chondrocytes formed coincident with Sox9 upregulation from a precursor population expressing Cbfa1/Runx2: a reversal of the normal sequence. Such secondary chondrocytes rapidly acquired a phenotype that is a compound of prehypertrophic and hypertrophic chondrocytes, exited from the cell cycle and upregulated Ihh. Pulse and pulse/chase experiments with BrdU confirmed the germinal region as the highly proliferative source of the secondary chondrocytes, which formed by division of chondrocyte-committed precursors. By blocking Hh signalling in explant cultures we show that the enhanced proliferation of the germinal region surrounding the secondary chondrocytes derives from this Ihh source. Additionally, in vitro studies on membrane bone periosteal cells (non-germinal region) demonstrated that these cells can also respond to Ihh, and do so both by enhanced proliferation and precocious osteogenesis. Despite the pro-osteogenic effects of Ihh on periosteal cell differentiation, mechanical articulation of the quadratojugal/quadrate joint in explant culture revealed a negative role for articulation in the regulation of osteocalcin by germinal region descendants. Thus, the mechanical stimulus that is the spur to secondary chondrocyte formation appears able to override the osteogenic influence of Ihh on the periosteum, but does not interfere with the cell cycle-promoting component of Hh signalling.  相似文献   

15.
16.
We have established an in vitro assay for assembly of the cortical actin cytoskeleton of budding yeast cells. After permeabilization of yeast by a novel procedure designed to maintain the spatial organization of cellular constituents, exogenously added fluorescently labeled actin monomers assemble into distinct structures in a pattern that is similar to the cortical actin distribution in vivo. Actin assembly in the bud of small-budded cells requires a nucleation activity provided by protein factors that appear to be distinct from the barbed ends of endogenous actin filaments. This nucleation activity is lost in cells that lack either Sla1 or Sla2, proteins previously implicated in cortical actin cytoskeleton function, suggesting a possible role for these proteins in the nucleation reaction. The rate and the extent of actin assembly in the bud are increased in permeabilized delta cap2 cells, providing evidence that capping protein regulates the ability of the barbed ends of actin filaments to grow in yeast cells. Actin incorporation in the bud can be stimulated by treating the permeabilized cells with GTP-gamma S, and, significantly, the stimulatory effect is eliminated by a mutation in CDC42, a gene that encodes a Rho-like GTP-binding protein required for bud formation. Furthermore, the lack of actin nucleation activity in the cdc42 mutant can be complemented in vitro by a constitutively active Cdc42 protein. These results suggest that Cdc42 is closely involved in regulating actin assembly during polarized cell growth.  相似文献   

17.
18.
The dynamic behavior of pure actin in vitro is more complex than that of most simple polymers, due to the energy input from the irreversible nucleotide hydrolysis associated with polymerization. However, the dynamic behavior of actin is vastly more complicated inside cells, where dozens of different types of actin-binding proteins alter every rate constant for actin polymerization and the chemical environment is inhomogeneous both temporally and spatially. Actin dynamics in cells are tightly regulated, so that rapid filament polymerization can occur in response to external signals or at the front of an active lamellipodium, while rapid depolymerization occurs simultaneously elsewhere in the cell. Although more direct observations of actin dynamics in vivo are accumulating, it is not yet clear how to reconcile the behavior of actin in cells with its well-documented in vitro properties.  相似文献   

19.
Summary Conventional methods for preservation of suspended, highly vacuolated, plant cells in liquid nitrogen (LN) usually involve equilibration in molar concentrations of cryoprotective additives, followed by slow cooling to an intermediate subzero temperature (–40 °C), before quenching in LN. Cryomicroscopy was used to monitor the reversible protoplasmic shrinkage of cryoprotected carrot cells, caused by freeze-induced dehydration. Behaviour of actin filaments was analyzed by fluorescence microscopy after labelling with rhodarnine-conjugated phalloidin, in relation to the type of pretreatment and to survival and regrowth ability after preservation at — 196 °C. Loading with dimethylsulphoxide (Me2SO, 5%) resulted in high survival rates (70%) and regrowth. After thawing, the actin filament (MF) abundance was reduced, but the structure and distribution of the remaining MFs seemed undisturbed. Higher Me2SO concentrations caused further reduction of MFs, which appeared fragmented after thawing. MFs were maintained by pretreatment with 0.5 M sorbitol alone but carrot cells did not survive at — 196 °C. The same pretreatment, followed by incubation with cytochalasin D (10 M), which greatly reduced MFs, enabled plasmolyzed carrot cells to survive preservation in liquid nitrogen. Thus, after both Me2SO and sorbitol plus cytochalasin D pretreatments, partial disruption of actin filaments seemed to accompany (Me2SO) or promote (sorbitol plus cytochalasin D) freezing tolerance at extremely low temperatures.Abbreviations CD cytochalasin D - FDA fluorescein diacetate - LN liquid nitrogen - MF actin filament - Me2SO dimethylsulphoxide  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号