首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The impact of herbivores on plant fitness depends on multiple ecological mechanisms, including interactions between herbivore guilds. 2. This study assessed the effects of a specialist aphid (Aphis echinaceae) on performance and foliar herbivore damage of a long‐lived perennial plant (Echinacea angustifolia) native to the North American tallgrass prairie. A 2‐year field experiment manipulating aphid infestation on 100 plants was compared with concurrent and past observations of unmanipulated plants in the same outdoor experimental plot. Because ants co‐occur with aphids, the experiment tested the combined effects of aphids and ants. 3. Neither manipulated nor naturally‐occurring aphid infestations led to measurable declines in plant performance. Results for foliar herbivore damage differed between experimental and observational studies: the occurrence of foliar herbivore damage decreased with aphid infestation in the first year of the experiment and increased with aphid infestation over 5 years in unmanipulated plants. 4. While the experimental results concur with other experiments of ant–hemipteran–herbivore relationships, the observational results suggest that ant–aphid interactions do not naturally play a major role in determining patterns of foliar herbivory in this system. This result demonstrates the value of using field observations to interpret the relevance of experimental results.  相似文献   

2.
Abstract.  1. Although interactions between ants and honeydew-producing insects have received considerable study, relatively little is known about how these interactions alter the behaviour of ants in ways that affect other arthropods. In this study, field and greenhouse experiments were performed that examined how the presence of aphids ( Aphis fabae solanella ) on Solanum nigrum influenced the foraging behaviour of Argentine ants ( Linepithema humile ) and, in turn, modified the extent to which ants deter larval lacewings ( Chrysoperla rufilabris ), which are known aphid predators.
2. A field experiment demonstrated that the level of foliar foraging by ants increased linearly with aphid abundance, whereas no relationship existed between the level of ground foraging by ants and aphid abundance.
3. In the greenhouse, as in the field, foliar foraging by ants greatly increased when aphids were present. Higher levels of foliar foraging led to a twofold increase in the likelihood that ants contacted aphid predators. As a result of these increased encounters with ants, lacewing larvae were twice as likely to be removed from plants with aphids compared with plants without aphids. Once contact was made, however, the behaviour of ants towards lacewing larvae appeared similar between the two experimental groups.
4. Argentine ants drive away or prey upon a diversity of arthropod predators and parasitoids, but they also exhibit aggression towards certain herbivores. Future work should attempt to quantify how the ecological effects that result from interactions between honeydew-producing insects and invasive ants, such as L. humile , differ from those that result from interactions between honeydew-producing insects and native ants.  相似文献   

3.
Small-scale disturbances caused by animals often modify soil resource availability and may also affect plant attributes. Changes in the phenotype of plants growing on disturbed, nutrient-enriched microsites may influence the distribution and abundance of associated insects. We evaluated how the high nutrient availability generated by leaf-cutting ant nests in a Patagonian desert steppe may spread along the trophic chain, affecting the phenotype of two thistle species, the abundance of a specialist aphid and the composition of the associated assemblage of tending ants. Plants of the thistle species Carduus nutans and Onopordum acanthium growing in piles of waste material generated by leaf-cutting ant nests (i.e., refuse dumps) had more leaves, inflorescences and higher foliar nitrogen content than those in non-nest soils. Overall, plants in refuse dumps showed higher abundance of aphids than plants in non-nest soils, and aphid colonies were of greater size on O. acanthium plants than on C. nutans plants. However, only C. nutans plants showed an increase in aphid abundance when growing on refuse dumps. This resulted in a similar aphid load in both thistle species when growing on refuse dumps. Accordingly, only C. nutans showed an increase in the number of ant species attending aphids when growing on refuse dumps. The increase of soil fertility generated by leaf-cutting ant nests can affect aphid abundance and their tending ant assemblage through its effect on plant size and quality. However, the propagation of small-scale soil disturbances through the trophic chain may depend on the identity of the species involved.  相似文献   

4.
Most studies regarding ant–aphid interactions focus only on the direct effects of ants on tended aphids and aphidophagous predators, or the indirect effects on the host plant. Studies evaluating the effects of aphid‐tending ants on more than one trophic level are rare and evaluate only the presence or absence of such effects. Here we assessed the effect sizes of ants in a tri‐trophic system (common bean plants, aphids and lacewing larvae). We tested if the presence of aphid‐tending ants has positive effects on aphid abundance and host‐plant production and negative effects on aphid predator abundance. We also hypothesized that aphid‐tending ants affect more intensely trophic levels that are more directly related to them (i.e., first aphids, then aphid predators and then host plants). We tested these hypotheses in field mesocosms experiments using the presence and absence of ants. We found that aphid‐tending ants have great positive effects on final aphid abundance. Ants also positively affected the number of seeds; however, it was not possible to measure the effect size for this trophic level. Furthermore, ants had negative effects on lacewing larvae only at first release. The effect size of ants was greater for aphids, followed by lacewing larvae, and with no effects on the number of seeds produced. Ants positively affect aphids and host‐plant production, probably by way of honeydew collection preventing the development of entomophagous/saprophytic fungi. On the other hand, ants negatively affect lacewing larvae by excluding them from the host plant. In natural systems, several ant species may attend aphids, differently affecting the organisms of the various trophic levels within the ant–aphid interaction, thereby obscuring the real effect size of ants. Assessing the effect size of aphid‐tending ants on the organisms involved in ant–aphid interactions provides more realistic information about the effects of this interaction on natural systems.  相似文献   

5.
Understanding the interactions among plants, hemipterans, and ants has provided numerous insights into a range of ecological and evolutionary processes. In these systems, however, studies concerning the isolated direct and indirect effects of aphid colonies on host plant and other herbivores remain rare at best. The aphid Uroleucon erigeronensis forms dense colonies on the apical shoots of the host plant Baccharis dracunculilfolia (Asteraceae). The honeydew produced by these aphids attracts several species of ants that might interfere with other herbivores. Four hypotheses were tested in this system: (1) ants tending aphids reduce the abundance of other herbivores; (2) the effects of ants and aphids upon herbivores differ between chewing and fluid-sucking herbivores; (3) aphids alone reduce the abundance of other herbivores; and (4), the aphid presence negatively affects B. dracunculifolia shoot growth. The hypotheses were evaluated with ant and aphid exclusion experiments, on isolated plant shoots, along six consecutive months. We adjusted linear mixed-effects models for longitudinal data (repeated measures), with nested spatial random effect. The results showed that: (1) herbivore abundance was lower on shoots with aphids than on shoots without aphids, and even lower on shoots with aphids and ants; (2) both chewing and fluid-sucking insects responded similarly to the treatment, and (3) aphid presence affected negatively B. dracunculifolia shoot growth. Thus, since aphids alone changed plant growth and the abundance of insect herbivores, we suggest that the ant–aphid association is important to the organization of the system B. dracunculifolia-herbivorous insects.  相似文献   

6.

Ant–aphid mutualisms can generate cascade effects on the host plants, but these impacts depend on the ecological context. We studied the consequences of ant–aphid interactions on the reproductive performance of a Mediterranean leafless shrub (Retama sphaerocarpa), through direct and indirect effects on the arthropod community. By manipulating the presence of ants and aphids in the field, we found that ants increased aphid abundance and their persistence on the plant and reduced aphid predators by nearly half. However, the presence of ants did not affect the abundance of other plant herbivores, which were relatively scarce in the studied plants. Aphids, and particularly those tended by ants, had a negative impact on the plant reproductive performance by significantly reducing the number of fruits produced. However, fruit and seed traits were not changed by the presence of aphids or those tended by ants. We show that ants favoured aphids by protecting them from their natural enemies but did not indirectly benefit plants through herbivory suppression, resulting in a net negative impact on the plant reproductive performance. Our study suggests that the benefits obtained by plants from hosting ant–aphid mutualisms are dependent on the arthropod community and plant traits.

  相似文献   

7.
Barley yellow dwarf (BYD) is one of the most common diseases of cereal crops, caused by the phloem‐limited, cereal aphid‐borne Barley yellow dwarf virus (BYDV) (Luteoviridae). Delayed planting and controlling aphid vector numbers with insecticides have been the primary approaches to manage BYD. There is limited research on nitrogen (N) application effects on plant growth, N status, and water use in the BYDV pathosystem in the absence of aphid control. Such information will be essential in developing a post‐infection management plan for BYDV‐infected cereals. Through a greenhouse study, we assessed whether manipulation of N supply to BYDV‐infected winter wheat, Triticum aestivum L. (Poaceae), in the presence or absence of the aphid vector Rhopalosiphum padi L. (Hemiptera: Aphididae), could improve N and/or water uptake, and subsequently promote plant growth. Similar responses of shoot biomass and of water and N use efficiencies to various N application rates were observed in both BYDV‐infected and non‐infected plants, suggesting that winter wheat plants with only BYDV infection may be capable of outgrowing infection by the virus. Plants, which simultaneously hosted aphids and BYDV, suffered more severe symptoms and possessed higher virus loads than those infected with BYDV only. Moreover, in plants hosting both BYDV and aphids, aphid pressure was positively associated with N concentration within plant tissue, suggesting that N application and N concentration within foliar tissue may alter BYDV replication indirectly through their influence on aphid reproduction. Even though shoot biomass, tissue N concentration, and water use efficiency increased in response to increased N application, decision‐making on N fertilization to plants hosting both BYDV and aphids should take into consideration the potential of aphid outbreak and/or the possibility of reduced plant resilience to environmental stresses due to decreased root growth.  相似文献   

8.
1. Although plant invasions often reduce insect abundance and diversity, non‐native plants that support phytophagous insects can subsidise higher trophic levels via elevated herbivore abundance. 2. Here ant–aphid interactions on non‐native fennel on Santa Cruz Island, California are examined. Fennel hosts abundant, honeydew‐producing fennel aphids. The patchiness of fennel and the relative lack of honeydew‐producing insects on other plants at our study sites suggest that assimilation of fennel‐derived honeydew would increase the abundance and decrease the trophic position of the omnivorous, aphid‐tending Argentine ant. 3. To assess the strength of the ant–aphid interaction, a comparison of ant abundance on and adjacent to fennel prior to and 3 weeks after experimental aphid removal was performed. Compared with control plants with aphids, ants declined in abundance on and around fennel plants following aphid removal. At the habitat scale, pitfall traps in fennel‐dominated habitats captured more ants than in fennel‐free scrub habitats. 4. To determine if assimilation of aphid‐produced honeydew reduces the ant's trophic position, variation in δ15N values among ants, plants and other arthropods was analysed. Unexpectedly, δ15N values for ants in fennel‐dominated habitats were higher than those of arthropod predators from the same sites and also higher than those of ants from fennel‐free habitats. 5. Our results illustrate how introduced plants that support phytophagous insects appear to transfer energy to higher trophic levels via elevated herbivore abundance. Although assimilation of fennel‐derived honeydew did not appear to reduce consumer trophic position, spatial variation in alternative food resources might obscure contributions from honeydew.  相似文献   

9.
1. The aphid Uroleucon nigrotuberculatum Olive, which is specialised to the tall goldenrod, Solidago altissima L., in its native range, has become a dominant species on the introduced tall goldenrod in Japan. How this exotic aphid influenced arthropod communities on the introduced tall goldenrod in aphid‐present (spring) and aphid‐absent (autumn) seasons was examined, using an aphid removal experiment. 2. In spring, aphid presence increased ant abundance because aphid honeydew attracted foraging ant workers. A significant negative correlation was found between the numbers of ants and herbivorous insects other than aphids on the aphid‐exposed plants, but no significant correlation was detected on the aphid‐free plants. Thus, the aphid presence was likely to decrease the abundance of co‐occurring herbivorous insects through removal behaviour of the aphid‐tending ants. There were no significant differences in plant traits between the aphid‐exposed and aphid‐free plants. 3. In autumn, the numbers of lateral shoots and leaves, and the leaf nitrogen content were increased in response to the aphid infestation in spring. Because of the improvement of plant traits by aphid feeding, the abundance of leaf chewers increased on aphid‐exposed plants. In contrast, the abundance of sap feeders decreased on the aphid‐exposed plants. In particular, the dominant scale insect among sap feeders, Parasaissetia nigra Nietner, decreased, followed by a decrease in the abundance of ants attending P. nigra. Thus, aphid feeding may have attenuated the negative impacts of the tending ants on leaf chewers. 4. Aphid presence did not change herbivore species richness but changed the relative density of dominant herbivores, resulting in community‐wide effects on co‐occurring herbivores through ant‐mediated indirect effects, and on temporally separated herbivores through plant‐ and ant‐mediated indirect effects. The aphid also altered predator community composition by increasing and decreasing the relative abundance of aphid‐tending ants in the spring and autumn, respectively.  相似文献   

10.
1. Spatially distributed resources can lead to the formation of metapopulations, where individual subpopulations are often small and can experience frequent local extinction events followed by recolonisation. An example of terrestrial metapopulations are specialised phytophagous insects on their patchily distributed host plants. 2. The present study investigated the population dynamics of a specialised aphid (Metopeurum fuscoviride) on its patchily distributed host plant (Tanacetum vulgare) and associated community of mutualistic ants and predators in a small‐scale field site. Furthermore, aphid habitat differences (plant size, C/N ratio, location and surrounding vegetation) were quantified, and seasonal timing and precipitation were considered. 3. Seasonal timing and precipitation both had effects on aphid colonisation, extinction events and aphid colony persistence. Towards the end of the season, and after higher precipitation, aphid colonisation events decreased and extinction events increased. Plant size and location as well as aphid within‐field dispersal determined the spatio‐temporal distribution of aphid colonies. 4. Mutualistic ants (Lasius niger and Myrmica rubra) increased the chance of establishment of aphid colonies. However, when M. rubra was tending, aphid colony persistence was reduced. Aphid persistence and extinction were dependent on aphid abundance, as a higher colony size reduced the probability of extinction by predation. 5. The results emphasise the importance of dispersal limitation, population growth and the presence of mutualists when studying the spatio‐temporal dynamics of tansy aphids, particularly in a small‐scale field site.  相似文献   

11.
Based on the well-known mutualism between ants (Hymenoptera: Formicidae) and aphids (Homoptera: Aphididae), we conducted a five-year experiment of ant-exclusion from the canopies of citrus trees as a possible method of biological control of aphids. However, our results showed that the exclusion of ants from the canopies increased, instead of reducing, aphid abundance. To explain this unexpected result, we reasoned that the exclusion of ants from the canopies might also have excluded crawling insects that prey on aphids, such as the European earwig (Forficula auricularia L., Dermaptera: Forficulidae). Such a possibility is supported by the negative relationship between aphid density and the abundance of earwigs, consistent with a top-down control of aphids by earwigs. In contrast, the abundance of other aphid predators (Coleoptera: Coccinellidae, and Heteroptera) had no such negative effect on aphid density but a positive one, suggesting a bottom-up control, and showed no differences between control and ant-excluded trees. Thus, the most likely explanation for the increase in aphid abundance in the ant-excluded trees is the absence of earwigs from the canopies of the experimental trees, providing further evidence of the major role that earwigs play as control agents of aphids in cultivated trees.  相似文献   

12.
Little is known about the mechanisms by which plant genotype shapes arthropod community structure. In a field experiment, we measured the effects of milkweed (Asclepias syriaca) genotype and ants on milkweed arthropods. Populations of the ant-tended aphid Aphis asclepiadis and the untended aphid Myzocallis asclepiadis varied eight- to 18-fold among milkweed genotypes, depending on aphid species and whether ants were present. There was no milkweed effect on predatory arthropods. Ants increased Aphis abundance 59%, decreased Myzocallis abundance 52%, and decreased predator abundance 56%. Milkweed genotype indirectly influenced ants via direct effects on Aphis and Myzocallis abundance. Milkweed genotype also modified ant-aphid interactions, influencing the number of ants attracted per Aphis and Myzocallis. While ant effects on Myzocallis were consistently negative, effects on Aphis ranged from antagonistic to mutualistic among milkweed genotypes. As a consequence of milkweed effects on ant-aphid interactions, ant abundance varied 13-fold among milkweed genotypes, and monarch caterpillar survival was negatively correlated with genetic variation in ant abundance. We speculate that heritable variation in milkweed phloem sap drives these effects on aphids, ants, and caterpillars. In summary, milkweed exerts genetic control over the interactions between aphids and an ant that provides defense against foliage-feeding caterpillars.  相似文献   

13.
The means by which plant genotypes influence species interactions and arthropod community structure remain poorly understood. One potential, but largely unstudied mechanism is that occurring through plant genetic variation in induced responses to herbivory. Here we test whether induced responses to leaf damage and genotypic variation for induction in Asclepias syriaca influence interactions among Formica podzolica ants, the ant‐tended aphid Aphis asclepiadis, and the untended aphid Myzocallis asclepiadis. In so doing, we assess genetic variation in plant‐mediated interactions among different herbivore guilds. We conducted a three‐way factorial field experiment manipulating plant genotype, leaf damage by specialist monarch caterpillars Danaus plexippus, and ant presence, and documented effects on aphid and ant abundances. Leaf damage increased Aphis abundance in both the presence and absence of ants and Myzocallis abundance under ant exclusion. In the presence of ants, leaf damage decreased Myzocallis abundance, likely due to effects on ant–Myzocallis interactions; ants showed a positive association with Myzocallis, leaf damage increased the strength of this association (425% more ants per aphid), and this in turn fed back to suppress Myzocallis abundance. Yet, these aggregate effects of leaf damage on Myzocallis and ants were underlain by substantial variation among milkweed geno types, with leaf damage inducing lower aphid and ant abundances on some genotypes, but higher abundances on others. As a consequence, a substantial fraction of the variation in leaf damage effects on ants (R2 =0.42) was explained by milkweed genetic variation in the strength and sign of leaf damage effects on Myzocallis. Although plant genetic variation influenced Aphis abundance, this did not translate into genetic variation in ant abundance, and leaf damage did not influence Aphis–ant interactions. Overall, we show that variation in induced responses to herbivory is a relevant condition by which plant genotype influences interactions in plant‐centered arthropod communities and provide novel results of effects on the third trophic level.  相似文献   

14.
Abstract 1. We examined the relative effects of the invasive Argentine ant, Linepithema humile, and a common native ant, Prenolepis imparis, on the community of herbivorous insects occurring on willow trees, Salix lasiolepis in Northern California, U.S.A. 2. Using paired control and treatment branches from which we excluded ants and other non‐volant predators, we found that effects of Argentine ants on the herbivore community were generally similar to those of P. imparis. Argentine ants and P. imparis suppressed the damage by skeletonising insects by 50%, but had little effect on most other external‐feeding or internal‐feeding guilds. 3. The abundance of aphids was 100% greater in the presence of Argentine ants, but there was no effect on aphid numbers in the presence of P. imparis. Late season aphid numbers were substantially higher in the presence of Argentine ants, but not P. imparis. 4. The effects of Argentine ants on skeletonising insects and aphids combined with the overwhelming abundance of Argentine ant workers, suggests that they may have substantial, but often overlooked, effects on the herbivore communities on other plant species in or near riparian habitats in which they invade.  相似文献   

15.
A species’ genotype can have extended consequences for the structure of the surrounding community, but few studies have investigated the extended consequences of genetic variation in animals. Accordingly, I examined the importance of genetically based variation among five populations of the ant-tended aphid Aphis asclepiadis for its interactions with both ants and predators. In a common environment, aphid source population accounted for 23 and 17% of the variation in the occurrence of ants and predators, respectively. Ant exclusion increased predator abundance, accounting for 25% of variation, but there was no detectable influence of ants on aphid abundance. There was an indication that aphid source populations varied in honeydew quality, but this was uncorrelated with rates of ant attendance. This study provides the first evidence for genetic variation in aphids for attractiveness to ants, and underscores the important link between intra-specific genetic variation in aphids and the processes governing arthropod community structure.  相似文献   

16.
We observed the abundance of leaf shelters, aphids, other herbivores, and predators on willow trees, Salix eriocarpa, from May to October 2003. There was a positive correlation between the growth rate of aphids and the number of ants per shoot, suggesting ant attendance to aphids. Although the mean abundance of leaf shelters per shoot was rather low (1.7–2.2) throughout the observation period, aphids preferred to use shoots with leaf shelters compared with those without leaf shelters. The abundance of ants was positively influenced by the presence of leaf shelters and aphids from May to August. The abundance of other herbivores was positively influenced by leaf shelters, but negatively influenced by aphid presence from May to August. Furthermore, leaf shelters had a positive effect on the abundance of predators from July to October. These data suggest that a relatively low abundance of naturally occurring leaf shelters per shoot influenced the arthropod communities on S. eriocarpa, and the effect of those leaf shelters on each type of arthropod varied according to the season.  相似文献   

17.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

18.
Plant-aphid interactions: molecular and ecological perspectives   总被引:3,自引:0,他引:3  
Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.  相似文献   

19.
Sap-feeding homopterans, which reduce the fitness of their host plants, are often tended by ants that feed on their honeydew. The composition of the honeydew varies with both the aphid and the host plant. Extra-floral nectaries (EFNs) are believed to have evolved to attract attending ants, protecting the hosts, but it is unknown if EFNs on different plants have the same impact on the relations between an aphid species feeding on those plants and its tending ant. Experimental research was conducted to examine the attraction of Tapinoma erraticum scout ants to honeydew from the aphid Aphis gossypii feeding on two different plants, Prunus amygdalus and Mentha piperita, negligence of tending the aphids, and survival of the aphids in the presence of artificial EFNs. The scout ants were significantly more attracted to artificial nectar dispensed on P. amygdalus leaves than on M. piperita, or aphids on both plants and water. They neglected aphids in the presence of artificial EFNs on M. piperita but not on P. amygdalus. The aphid population on M. piperita did not statistically change in the presence of artificial EFNs during the 8 days of the third experiment. On P. amygdalus, the aphids succeeded in developing fully to winged form. In conclusion, the responses of the ants tending aphids to the presence of artificial EFNs were influenced by the host plant.  相似文献   

20.
In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号