共查询到20条相似文献,搜索用时 15 毫秒
1.
Glandular trichomes are conventionally viewed as a type of direct defense against herbivores that carry indirect costs associated with the exclusion of numerous predators. We tested the hypothesis that predators are ineffective on sticky plants using a predator that is adapted to sticky plants, the harpactorine assassin bug Pselliopus spinicollis Champion, and a common surrogate generalist predator in analogous studies, the coccinellid Hippodamia convergens Guerin. We tested their top–down effects on herbivores using sticky and non-sticky races of common madia plants (Asteraceae: Madia elegans) and their native herbivores, a noctuid moth (Noctuiidae: Heliothodes diminutiva Hodges) and an aphid (Aphididae: Uroleucon madia Swain). We report that both predators were effective at reducing herbivore abundances on sticky and non-sticky plants, with greater efficacy on sticky plants. 相似文献
2.
Recent studies on plant–herbivore indirect interactions via nutrient recycling have led to the hypothesis that herbivores with a low nitrogen: phosphorus ratio, feeding on plants with a higher nitrogen: phosphorus ratio, recycle relatively more nitrogen, driving plants into phosphorus limitation. We demonstrate in this paper that such a hypothesis is valid only under restricted conditions, i.e. the nitrogen: phosphorus ratio of inorganic nutrients supplied to the system must be neither too high nor too low compared with the nitrogen: phosphorus ratio of the whole plant + herbivore biomass. If plants have a greater affinity for phosphorus than for nitrogen, low herbivore nitrogen: phosphorus ratio can even promote nitrogen limitation. These results are qualitatively robust, whether grazing functions are donor-controlled or recipient-controlled. We present a graphical analysis of these conditions based on the Zero Net Growth Isocline method. 相似文献
3.
Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions 总被引:4,自引:0,他引:4
Most ecologists acknowledge that plants are subject to complex interactions between both below- and aboveground dwelling animals. However, these complex interactions are seldomly investigated simultaneously. In a factorial common garden experiment we tested single and combined effects of decomposers, root herbivores and leaf herbivores on the growth, flower visitation, and abundance of naturally colonizing aphids and parasitoids on wild mustard ( Sinapis arvensis ). We found that the individual presence of either root herbivores or decomposers resulted in increased aphid abundance, demonstrating that the same aboveground plant–insect interaction can be released by different belowground processes. Enhanced aphid densities caused higher numbers of parasitoids. Furthermore, decomposers increased plant growth and plant fitness (measured as the number of seeds produced), indicating that mustard may benefit from nutrients provided by decomposers, regardless whether plants are attacked by root herbivores or leaf herbivores, or both simultaneously. More flower visits were observed in plants attacked by root herbivores but without leaf herbivores than in plants with both herbivores, suggesting that root herbivory can modify flower attractivity to pollinators. Our results suggest that patterns in plant–insect interactions above the ground are not only affected by aboveground factors but also by a wealth of different belowground processes mediated by the plant. 相似文献
4.
Compound effects of induced plant responses on insect herbivores and parasitoids: implications for tritrophic interactions 总被引:7,自引:0,他引:7
1. Induced plant responses can affect herbivores either directly, by reducing herbivore development, or indirectly, by affecting the performance of natural enemies. Both the direct and indirect impacts of induction on herbivore and parasitoid success were evaluated in a common experimental system, using clonal poplar trees Populus nigra (Salicales: Salicaceae), the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), and the gregarious parasitoid Glyptapanteles flavicoxis (Marsh) (Hymenoptera: Braconidae). 2. Female parasitoids were attracted to leaf odours from both damaged and undamaged trees, however herbivore‐damaged leaves were three times more attractive to wasps than undamaged leaves. Parasitoids were also attracted to herbivore larvae reared on foliage and to larval frass, but they were not attracted to larvae reared on artificial diet. 3. Prior gypsy moth feeding elicited a systemic plant response that retarded the growth rate, feeding, and survival of gypsy moth larvae, however induction also reduced the developmental success of the parasitoid. 4. The mean number of parasitoid progeny emerging from hosts fed foliage from induced trees was 40% less than from uninduced trees. In addition, the proportion of parasitised larvae that survived long enough to issue any parasitoids was lower on foliage from induced trees. 5. A conceptual and analytical model is provided to describe the net impacts of induced plant responses on parasitoids, and implications for tritrophic interactions and biological control of insect pests are discussed. 相似文献
5.
6.
Several influential hypotheses in plant-herbivore and herbivore-predator interactions consider the interactive effects of plant quality, herbivore diet breadth, and predation on herbivore performance. Yet individually and collectively, these hypotheses fail to address the simultaneous influence of all three factors. Here we review existing hypotheses, and propose the tri-trophic interactions (TTI) hypothesis to consolidate and integrate their predictions. The TTI hypothesis predicts that dietary specialist herbivores (as compared to generalists) should escape predators and be competitively dominant due to faster growth rates, and that such differences should be greater on low quality (as compared to high quality) host plants. To provide a preliminary test of these predictions, we conducted an empirical study comparing the effects of plant (Baccharis salicifolia) quality and predators between a specialist (Uroleucon macolai) and a generalist (Aphis gossypii) aphid herbivore. Consistent with predictions, these three factors interactively determine herbivore performance in ways not addressed by existing hypotheses. Compared to the specialist, the generalist was less fecund, competitively inferior, and more sensitive to low plant quality. Correspondingly, predator effects were contingent upon plant quality only for the generalist. Contrary to predictions, predator effects were weaker for the generalist and on low-quality plants, likely due to density-dependent benefits provided to the generalist by mutualist ants. Because the TTI hypothesis predicts the superior performance of specialists, mutualist ants may be critical to A. gossypii persistence under competition from U. macolai. In summary, the integrative nature of the TTI hypothesis offers novel insight into the determinants of plant-herbivore and herbivore-predator interactions and the coexistence of specialist and generalist herbivores. 相似文献
7.
Frederico de Siqueira Neves Marcílio Fagundes Carlos Frankl Sperber G. Wilson Fernandes 《Arthropod-Plant Interactions》2011,5(4):351-357
Understanding the interactions among plants, hemipterans, and ants has provided numerous insights into a range of ecological
and evolutionary processes. In these systems, however, studies concerning the isolated direct and indirect effects of aphid
colonies on host plant and other herbivores remain rare at best. The aphid Uroleucon erigeronensis forms dense colonies on the apical shoots of the host plant Baccharis dracunculilfolia (Asteraceae). The honeydew produced by these aphids attracts several species of ants that might interfere with other herbivores.
Four hypotheses were tested in this system: (1) ants tending aphids reduce the abundance of other herbivores; (2) the effects
of ants and aphids upon herbivores differ between chewing and fluid-sucking herbivores; (3) aphids alone reduce the abundance
of other herbivores; and (4), the aphid presence negatively affects B. dracunculifolia shoot growth. The hypotheses were evaluated with ant and aphid exclusion experiments, on isolated plant shoots, along six
consecutive months. We adjusted linear mixed-effects models for longitudinal data (repeated measures), with nested spatial
random effect. The results showed that: (1) herbivore abundance was lower on shoots with aphids than on shoots without aphids,
and even lower on shoots with aphids and ants; (2) both chewing and fluid-sucking insects responded similarly to the treatment,
and (3) aphid presence affected negatively B. dracunculifolia shoot growth. Thus, since aphids alone changed plant growth and the abundance of insect herbivores, we suggest that the ant–aphid
association is important to the organization of the system B. dracunculifolia-herbivorous insects. 相似文献
8.
9.
10.
Reproductive response of generalist and specialist aphid morphs with the same genotype to plant secondary compounds and amino acids 总被引:2,自引:0,他引:2
Many studies have paid particular attention to the role of either secondary plant compounds or amino acids as determinants of host-plant range in phytophagous insects. Here we examine the relative importance of both of these classes of compound in host acceptance by generalist and specialist morphs of the black bean aphid, Aphis fabae, that are morphologically similar and genetically identical. Eleven secondary plant compounds and six amino acids with known biological activity in aphids are presented to insects within an artificial membrane system as single compounds, mixtures of same-class compounds and combined mixtures of the two classes of compound. It is found that 1) when specific single secondary compounds and amino acids are presented to generalist and specialist morphs of A. fabae, differential responses are exclusively consistent with plant-use strategy for amino acids but not for secondary compounds, 2) neither secondary compound nor amino acid mixtures give reproductive responses entirely consistent with plant range, but the response to secondary compounds is broadly consistent with plant range whereas the response to amino acids is not, 3) when secondary compounds and amino acid mixtures are combined, the response to secondary compounds generally dominates that to amino acids. Some scenarios of plant-range determination by secondary plant compounds and amino acids, suggested by results, are discussed. 相似文献
11.
Host plant resistance to aphids in cultivated crops: Genetic and molecular bases,and interactions with aphid populations 总被引:2,自引:0,他引:2
Catherine Dogimont Abdelhafid Bendahmane Véronique Chovelon Nathalie Boissot 《Comptes rendus biologies》2010,333(6-7):566-573
Host plant resistance is an efficient and environmentally friendly means of controlling insects, including aphids, but resistant-breaking biotypes have occurred in several plant–aphid systems. Our review of the genetic and molecular bases of aphid resistance in crop species emphasizes the limited number of aphid resistance genes and alleles. Inheritance of aphid resistance may be monogenic (dominant or recessive genes) or polygenic. Two dominant, aphid resistance genes have been isolated to date. They both encode NBS-LRR proteins involved in the specific recognition of aphids. Strategies to ensure aphid resistance effectiveness and durability are discussed. Innovative research activities are proposed. 相似文献
12.
13.
Wei Huang Evan Siemann Xuefang Yang Gregory S. Wheeler Jianqing Ding 《Proceedings. Biological sciences / The Royal Society》2013,280(1767)
To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics. 相似文献
14.
Cotton produces insecticidal terpenoids that are induced by tissue-feeding herbivores. Damage by Heliothis virescens caterpillars increases the terpenoid content, which reduces the abundance of aphids. This effect is not evident in Bt-transgenic cotton, which is resistant to H. virescens. We determined whether induction of terpenoids by caterpillars influences the host quality of Aphis gossypii for the parasitoid Lysiphlebus testaceipes and whether this interaction is influenced by Bt cotton. The exposure of parasitoids to terpenoids was determined by quantifying terpenoids in the aphids. We detected several terpenoids in aphids and found a positive relationship between their concentrations in plants and aphids. When L. testaceipes was allowed to parasitize aphids on Bt and non-Bt cotton that was infested or uninfested with H. virescens, fewer parasitoid mummies were found on infested non-Bt than on Bt cotton. Important parasitoid life-table parameters, however, were not influenced by induced resistance following H. virescens infestation, or the Bt trait. Our study provides an example of a tritrophic indirect interaction web, where organisms are indirectly linked through changes in plant metabolites. 相似文献
15.
Iain S. Williams Alan M. Dewar Anthony F.G. Dixon 《Entomologia Experimentalis et Applicata》1998,89(1):25-33
This paper studies the influence of previous infestation on the host quality of sugar beet (Beta vulgaris L.) for aphids and the influence of previous infestation on sugar beet yellowing virus epidemiology. Sugar beet previously infested with Myzus persicae (Sulzer) or Aphis fabae Scopoli (Homoptera: Aphididae) had an improved host quality for subsequently infesting aphids of the same species. There was a significant negative relationship between the number of M. persicae infesting a plant and the proportion of those that died with a dark deposit in their stomachs, and a significant positive relationship between the number that settled on a plant and the number that infested it previously. Nymphs feeding on previously infested plants grew more rapidly than those on control plants. The beneficial effect of previous infestation persisted for at least 2 weeks and prolongation of the infestation beyond 2 weeks was of no further benefit to the aphids. Field grown sugar beet, previously colonised by M. persicae, was more susceptible to natural infestation by M. persicae up to 5 days after exposure. Previously infested plants were also more susceptible to infection with beet mild yellowing virus (BMYV) but not beet yellows virus (BYV), suggesting that the aphids on the previously infested sugar beet settled more readily and were more inclined to feed (and thus transmit BMYV) than aphids on the previously uninfested plants. The consequences for the control of sugar beet yellowing virus vectors are discussed. 相似文献
16.
Grover JP 《The American naturalist》2003,162(1):29-43
A model for prey and predators is formulated in which three essential nutrients can limit growth of both populations. Prey take up dissolved nutrients, while predators ingest prey, assimilate a fraction of ingested nutrients that depends on their current nutrient status, and recycle the balance. Although individuals are modeled as identical within populations, amounts of nutrients within individuals vary over time in both populations, with reproductive rates increasing with these amounts. Equilibria and their stability depend on nutrient supply conditions. When nutrient supply increases, unusual results can occur, such as a decrease of prey density. This phenomenon occurs if, with increasing nutrient, predators sequester rather than recycle nutrients. Furthermore, despite use of a linear functional response for predators, high nutrient supply can destabilize equilibria. Responses to nutrient supply depend on the balance between assimilation and recycling of nutrients by predators, which differs depending on the identity of the limiting nutrient. Applied to microbial ecosystems, the model predicts that the efficiency of organic carbon mineralization is reduced when supply of mineral nutrients is low and when equilibria are unstable. The extent to which predators recycle or sequester limiting nutrients for their prey is of critical importance for the stability of predator-prey systems and their response to enrichment. 相似文献
17.
18.
A caged field experiment was used to determine how Centaurea stoebe L. phenostage (rosette, single-stem, multiple-stem) and ploidy level (diploid = 2× and tetraploid = 4×) influence oviposition and feeding of two biological control agents, Agapeta zoegana (Lep.: Cochylidae) and Cyphocleonus achates (Col.: Curculionidae). Ploidy level did not influence oviposition patterns of A. zoegana but rosette and one-stem plants had significantly more eggs than multiple-stem (4×) plants. Differences in oviposition levels did not translate into differences in larval densities, but 2× plants (particularly large one-stem plants) had significantly more larvae than 4× plants. There was a significant positive correlation between numbers of larvae and root diameter. Ploidy level and phenostage both had a significant effect on C. achates feeding damage, with adults feeding more frequently on multiple-stem plants. No C. achates larvae were observed when the roots were dissected. Furthermore, the generalist herbivore Arion lusitanicus, naturally present in the garden plots, was predominantly associated with young rosette plants, a stage at which survival rate is acknowledged to be the most important determinant of knapweed density. These results indicate that the combined damage caused by A. zoegana and C. achates, superimposed on damage caused by generalist herbivores in the local community, could provide effective control for C. stoebe. 相似文献
19.
S. E. Hartley 《Oecologia》1988,76(1):65-70
Summary 1. The leaves of Betula pendula Roth trees were damaged artificially, or by insect-grazing. Both induced an increase in phenolic levels in damaged leaves, larger in the case of insect attack.-2. Some of the damaged trees were sprayed with an inhibitor of phenolic biosynthesis, (aminoxy) acetic acid, which led to a reduction in phenolic levels in both undamaged and damaged leaves. Hence both the effects of damage per se and damage-induced changes in foliage phenolic levels on insect feeding preference could be examined using this technique.-3. Herbivore feeding preferences were assessed in the laboratory by comparing damaged and undamaged leaves, with or without phenolic inhibition, using caterpillars of a natural birch feeder, Apocheima pilosaria D. & S. (Lepidoptera: Geometridae) and a non-birch feeder, Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae). Neither species showed any significant preferences and appeared indifferent to damage, irrespective of whether the trees had their damage-induced phenolic synthesis blocked.-4. The implications of these results for induced defense theory are discussed. 相似文献
20.
The allosteric model for ribonuclease activity by Walker, Ralston & Darvey [(1975) Biochem.J. 147, 425--433; (1976) Biochem.J. 153, 329--337] involves the binding of a large number of molecules of substrate or substrate analogue to a series of allosteric sites on the enzyme. In the present paper, the nature of these allosteric interactions is investigated. The effects of ionic strength pH carbamoylation of lysine to homocitrulline and of deamidation of glutamine and asparagine on plots of velocity versus substrate concentration are examined and evidence is presented that the allosteric transition involves an electrostatic interaction between the negatively charged substrate molecules and the cationic groups on the enzyme. 相似文献