首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational changes in allosteric regulation can to a large extent be described as motion along one or a few coherent degrees of freedom. The states involved are inherent to the protein, in the sense that they are visited by the protein also in the absence of effector ligands. Previously, we developed the measure binding leverage to find sites where ligand binding can shift the conformational equilibrium of a protein. Binding leverage is calculated for a set of motion vectors representing independent conformational degrees of freedom. In this paper, to analyze allosteric communication between binding sites, we introduce the concept of leverage coupling, based on the assumption that only pairs of sites that couple to the same conformational degrees of freedom can be allosterically connected. We demonstrate how leverage coupling can be used to analyze allosteric communication in a range of enzymes (regulated by both ligand binding and post-translational modifications) and huge molecular machines such as chaperones. Leverage coupling can be calculated for any protein structure to analyze both biological and latent catalytic and regulatory sites.  相似文献   

2.
Allosteric proteins demonstrate the phenomenon of a ligand binding to a protein at a regulatory or effector site and thereby changing the chemical affinity of the catalytic site. As such, allostery is extremely important biologically as a regulatory mechanism for molecular concentrations in many cellular processes. One particularly interesting feature of allostery is that often the catalytic and effector sites are separated by a large distance. Structural comparisons of allosteric proteins resolved in both inactive and active states indicate that a variety of structural rearrangement and changes in motions may contribute to general allosteric behavior. In general it is expected that the coupling of catalytic and regulatory sites is responsible for allosteric behavior. We utilize a novel examination of allostery using rigidity analysis of the underlying graph of the protein structures. Our results indicate a general global change in rigidity associated with allosteric transitions where the R state is more rigid than the T state. A set of allosteric proteins with heterotropic interactions is used to test the hypothesis that catalytic and effector sites are structurally coupled. Observation of a rigid path connecting the effector and catalytic sites in 68.75% of the structures points to rigidity as a means by which the distal sites communicate with each other and so contribute to allosteric regulation. Thus structural rigidity is shown to be a fundamental underlying property that promotes cooperativity and non-locality seen in allostery.  相似文献   

3.
4.
SecA, the preprotein translocase ATPase is built of an amino-terminal DEAD helicase motor domain bound to a regulatory C-domain. SecA recognizes mature and signal peptide preprotein regions. We now demonstrate that the amino-terminal 263 residues of the ATPase subdomain of the DEAD motor are necessary and sufficient for high affinity signal peptide binding. Binding is abrogated by deletion of residues 219-244 that lie within SSD, a novel substrate specificity element of the ATPase subdomain. SSD is essential for protein translocation, is unique to SecA, and is absent from other DEAD proteins. Signal peptide binding to the DEAD motor is controlled in trans by the C-terminal intramolecular regulator of ATPase (IRA1) switch. IRA1 mutations that activate the DEAD motor ATPase also enhance signal peptide affinity. This mechanism coordinates signal peptide binding with ATPase activation. Signal peptide binding causes widespread conformational changes to the ATPase subdomain and inhibits the DEAD motor ATPase. This involves an allosteric mechanism, since binding occurs at sites that are distinct from the catalytic ATPase determinants. Our data reveal the physical determinants and sophisticated intramolecular regulation that allow signal peptides to act as allosteric effectors of the SecA motor.  相似文献   

5.
Gunasekaran K  Ma B  Nussinov R 《Proteins》2004,57(3):433-443
Allostery involves coupling of conformational changes between two widely separated binding sites. The common view holds that allosteric proteins are symmetric oligomers, with each subunit existing in "at least" two conformational states with a different affinity for ligands. Recent observations such as the allosteric behavior of myoglobin, a classical example of a nonallosteric protein, call into question the existing allosteric dogma. Here we argue that all (nonfibrous) proteins are potentially allosteric. Allostery is a consequence of re-distributions of protein conformational ensembles. In a nonallosteric protein, the binding site shape may not show a concerted second-site change and enzyme kinetics may not reflect an allosteric transition. Nevertheless, appropriate ligands, point mutations, or external conditions may facilitate a population shift, leading a presumably nonallosteric protein to behave allosterically. In principle, practically any potential drug binding to the protein surface can alter the conformational redistribution. The question is its effectiveness in the redistribution of the ensemble, affecting the protein binding sites and its function. Here, we review experimental observations validating this view of protein allostery.  相似文献   

6.
Allostery, the process by which distant sites within a protein system are energetically coupled, is an efficient and ubiquitous mechanism for activity regulation. A purely mechanical view of allostery invoking only structural changes has developed over the decades as the classical view of the phenomenon. However, a fast growing list of examples illustrate the intimate link between internal motions over a wide range of time scales and function in protein-ligand interactions. Proteins respond to perturbations by redistributing their motions and they use fluctuating conformational states for binding and conformational entropy as a carrier of allosteric energy to modulate association with ligands. In several cases allosteric interactions proceed with minimal or no structural changes. We discuss emerging paradigms for the central role of protein dynamics in allostery.  相似文献   

7.
The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced “superacceptor” activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD) motif in the catalytic loop and the Asp-Phe-Gly (DFG) motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not limited to the ATP site, and may enhance allosteric cooperativity with the substrate binding region by increasing communication capabilities of mediating residues.  相似文献   

8.
Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.  相似文献   

9.
We present here a straightforward, broadly applicable technique for real-time detection and measurement of protein conformational changes in solution. This method is based on tethering proteins labeled with a second-harmonic generation (SHG) active dye to supported lipid bilayers. We demonstrate our method by measuring the conformational changes that occur upon ligand binding with three well-characterized proteins labeled at lysine residues: calmodulin (CaM), maltose-binding protein (MBP), and dihydrofolate reductase (DHFR). We also create a single-site cysteine mutant of DHFR engineered within the Met20 catalytic loop region and study the protein’s structural motion at this site. Using published x-ray crystal structures, we show that the changes in the SHG signals upon ligand binding are the result of structural motions that occur at the labeled sites between the apo and ligand-bound forms of the proteins, which are easily distinguished from each other. In addition, we demonstrate that different magnitudes of the SHG signal changes are due to different and specific ligand-induced conformational changes. Taken together, these data illustrate the potential of the SHG approach for detecting and measuring protein conformational changes for a wide range of biological applications.  相似文献   

10.
Mustafa M  Mirza A  Kannan N 《Proteins》2011,79(1):99-114
The catalytic domain of epidermal growth factor receptor (EGFR) is activated by dimerization, which requires allosteric coupling between distal dimerization and catalytic sites. Although crystal structures of EGFR kinases, solved in various conformational states, have provided important insights into EGFR activation by dimerization, the atomic details of how dimerization signals are dynamically coupled to catalytic regions of the kinase core are not fully understood. In this study, we have performed unrestrained and targeted molecular dynamics simulations on the active and inactive states of EGFR, followed by principal component analysis on the simulated trajectories, to identify correlated motions in the EGFR kinase domain upon dimerization. Our analysis reveals that the conformational changes associated with the catalytic functions of the kinase core are highly correlated with motions in the juxtamembrane (JM) and C-terminal tail, two flexible structural elements that play an active role in EGFR kinase activation and dimerization. In particular, the opening and closing of the ATP binding lobe relative to the substrate binding lobe is highly correlated with motions in the JM and C-terminal tail, suggesting that ATP and substrate binding can be coordinated with dimerization through conformational changes in the JM and C-terminal tail. Our study pinpoints key residues involved in this conformational coupling, and provides new insights into the role of the JM and C-terminal tail segments in EGFR kinase functions.  相似文献   

11.
The activation of protein kinases involves conformational changes in key functional regions of the kinase domain, a detailed understanding of which is essential for the design of selective protein kinase inhibitors. Through statistical analysis of protein kinase sequences and crystal structures from diverse organisms, we recently proposed that the activation of protein kinases involves a hidden strain switch in the catalytic loop. Specifically, we demonstrated that the backbone torsion-angles of residues in the catalytic loop switch from a “relaxed” to “strained” conformation upon kinase activation and the strained geometry results in a network of hydrogen bonds involving conserved non-catalytic residues in the ATP and substrate binding lobes. Here, we further explore this activation mechanism by analyzing families that lack the canonical hydrogen bonding interactions with the strained backbone. We find that alternative mechanisms have evolved to maintain catalytic loop strain. In PIM kinase, for example, two water molecules account for the lack of a conserved aspartate in the substrate binding by hydrogen bonds to the strained backbone. We discuss the relevance of these findings in the design of family-specific allosteric inhibitors, and in predicting the structural and functional impact of cancer mutations that alter the strain associated hydrogen bonding network. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

12.
13.
14.
As the central effector of visual transduction, the regulation of photoreceptor phosphodiesterase (PDE6) is controlled by both allosteric mechanisms and extrinsic binding partners. However, the conformational changes and interactions of PDE6 with known interacting proteins are poorly understood. Using a fluorescence detection system for the analytical ultracentrifuge, we examined allosteric changes in PDE6 structure and protein-protein interactions with its inhibitory γ-subunit, the prenyl-binding protein (PrBP/δ), and activated transducin. In solution, the PDE6 catalytic dimer (Pαβ) exhibits a more asymmetric shape (axial ratio of 6.6) than reported previously. The inhibitory Pγ subunit behaves as an intrinsically disordered protein in solution but binds with high affinity to the catalytic dimer to reconstitute the holoenzyme without a detectable change in shape. Whereas the closely related PDE5 homodimer undergoes a significant change in its sedimentation properties upon cGMP binding to its regulatory cGMP binding site, no such change was detected upon ligand binding to the PDE6 catalytic dimer. However, when Pαβ was reconstituted with Pγ truncation mutants lacking the C-terminal inhibitory region, cGMP-dependent allosteric changes were observed. PrBP/δ bound to the PDE6 holoenzyme with high affinity (K(D) = 6.2 nm) and induced elongation of the protein complex. Binding of activated transducin to PDE6 holoenzyme resulted in a concentration-dependent increase in the sedimentation coefficient, reflecting a dynamic equilibrium between transducin and PDE6. We conclude that allosteric regulation of PDE6 is more complex than for PDE5 and is dependent on interactions of regions of Pγ with the catalytic dimer.  相似文献   

15.
Daily MD  Gray JJ 《Proteins》2007,67(2):385-399
Allosteric proteins have been studied extensively in the last 40 years, but so far, no systematic analysis of conformational changes between allosteric structures has been carried out. Here, we compile a set of 51 pairs of known inactive and active allosteric protein structures from the Protein Data Bank. We calculate local conformational differences between the two structures of each protein using simple metrics, such as backbone and side-chain Cartesian displacement, and torsion angle change and rearrangement in residue-residue contacts. Thresholds for each metric arise from distributions of motions in two control sets of pairs of protein structures in the same biochemical state. Statistical analysis of motions in allosteric proteins quantifies the magnitude of allosteric effects and reveals simple structural principles about allostery. For example, allosteric proteins exhibit substantial conformational changes comprising about 20% of the residues. In addition, motions in allosteric proteins show strong bias toward weakly constrained regions such as loops and the protein surface. Correlation functions show that motions communicate through protein structures over distances averaging 10-20 residues in sequence space and 10-20 A in Cartesian space. Comparison of motions in the allosteric set and a set of 21 nonallosteric ligand-binding proteins shows that nonallosteric proteins also exhibit bias of motion toward weakly constrained regions and local correlation of motion. However, allosteric proteins exhibit twice as much percent motion on average as nonallosteric proteins with ligand-induced motion. These observations may guide efforts to design flexibility and allostery into proteins.  相似文献   

16.
The allosteric regulation of protein kinases serves as an efficient strategy for molecular communication, event coupling and interconversion between catalytic states. Recent co-crystal structures have revealed novel ways in which kinases control activity and substrate specificity following phosphorylation, dimerization, or binding to regulatory proteins, substrates and scaffolds. In addition, hydrogen exchange coupled with mass spectrometry is emerging as a complementary strategy to probe the solution behavior of kinases; recent results have shown that allosteric regulation may involve transitions in protein motions as well as structural rearrangements.  相似文献   

17.
In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.  相似文献   

18.
19.
Current drug discovery efforts generally focus on a limited number of protein classes, typically including proteins with well-defined catalytic active sites (e.g., kinases) or ligand binding sites (e.g., G protein-coupled receptors). Nevertheless, many clinically important pathways are mediated by proteins with no such obvious targets for small molecule inhibitors. Allosteric inhibitors offer an alternative approach to inhibition of protein activities, particularly for proteins that undergo conformational changes as part of their activity cycle. Proteins regulated by autoinhibitory domains represent one broad class of proteins that meets this criterion. In this article, we discuss the potential of autoinhibited proteins as targets for allosteric inhibitors and describe two examples of small molecules that act by stabilizing native autoinhibited conformations of their targets. We propose that proteins regulated by autoinhibition may be generally amenable to allosteric inhibition by small molecules that stabilize the native, autoinhibited fold.  相似文献   

20.
Luhua Lai 《Proteins》2015,83(8):1375-1384
Allosteric drugs act at a distance to regulate protein functions. They have several advantages over conventional orthosteric drugs, including diverse regulation types and fewer side effects. However, the rational design of allosteric ligands remains a challenge, especially when it comes to the identification allosteric binding sites. As the binding of allosteric ligands may induce changes in the pattern of residue–residue interactions, we calculated the residue–residue interaction energies within the allosteric site based on the molecular mechanics generalized Born surface area energy decomposition scheme. Using a dataset of 17 allosteric proteins with structural data for both the apo and the ligand‐bound state available, we used conformational ensembles generated by molecular dynamics simulations to compute the differences in the residue–residue interaction energies in known allosteric sites from both states. For all the known sites, distinct interaction energy differences (>25%) were observed. We then used CAVITY, a binding site detection program to identify novel putative allosteric sites in the same proteins. This yielded a total of 31 “druggable binding sites,” of which 21 exhibited >25% difference in residue interaction energies, and were hence predicted as novel allosteric sites. Three of the predicted allosteric sites were supported by recent experimental studies. All the predicted sites may serve as novel allosteric sites for allosteric ligand design. Our study provides a computational method for identifying novel allosteric sites for allosteric drug design. Proteins 2015; 83:1375–1384. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号