首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
West Nile virus (WNV) has emerged as an important vector-borne pathogen in North America, with more than 3 million estimated to have been infected. Retinopathy from WNV infection has been previously reported in acute cases, though those prior reports did not evaluate the risk of retinopathy based on clinical severity of neurologic disease. The purpose of this cross-sectional study was to perform comprehensive ophthalmological and neurological examinations on 111 patients with a history of West Nile virus infection and describe the ocular manifestations. Out of 111 patients, 27 (24%) had evidence for West Nile virus associated retinopathy (WNVR); this observation was higher (49%) in those patients who initially presented with encephalitis. Individuals with WNVR had more frequent involvement of the macula and peripheral involvement compared to those patients without WNVR (p<0.05). WNVR was also associated with a greater likelihood of abnormal reflexes on neurological exam, poorer learning, greater dependence in activities of daily living, and lower quality of life (p<0.05). WNVR was seen more frequently in elderly patients (age > 60 years), and was associated with higher rates of diabetes mellitus and a history of encephalitis (p<0.05). A multivariable logistic regression revealed that only a history of encephalitis was independently associated with WNVR [Adjusted Odds Ratio = 4.9 (1.8–13.2); p = 0.001]. Our study found that WNVR occurs in one fourth of patients with a history of WNV infection and is more frequently observed in those with apparent severe neurological sequelae (e.g., encephalitis). The clinical relevance of WNVR was supported by its associations with dependence in activities of daily living and lower quality of life. This unique evaluation of WNV patients included fundoscopic examinations and their associations with neurologic impairment. Our findings can be used during ophthalmological consultation for the evaluation, treatment and rehabilitation phases of care for WNV patients.  相似文献   

2.
West Nile virus (WNV) infects thousands of humans annually and causes a spectrum of disease ranging from an acute febrile illness to lethal encephalitis. A new study suggests a link between CCR5Delta32 (a common mutant allele of the chemokine and HIV receptor CCR5) and fatal WNV infection. The study highlights a possible risk in targeting this receptor for the prevention and/or treatment of infectious diseases.  相似文献   

3.
Since its emergence in 1999 in America, West Nile virus (WNV) has become the leading cause of arboviral encephalitis in the United States. The infection is often asymptomatic but, when clinical manifestations occur, a broad range of symptoms is observed from flu-like symptoms to more serious neurological disorders that can sometimes lead to death. No treatment or vaccine is available for humans. Ongoing studies are trying to understand the host-virus dynamics that lead to the development of severe neurological symptoms in a minority of infected subjects. The amount of knowledge that was gained from parallel studies in animals and humans, comparing asymptomatic and symptomatic individuals, and using what was known of other Flaviviruses, will eventually translate to the development of potential therapeutic and prophylactic solutions. This review presents a synthesis of the most relevant findings concerning the immune response to WNV and its impact on disease outcome and gives an overview of the most promising therapeutic and prophylactic solutions.  相似文献   

4.
西尼罗病毒研究进展   总被引:1,自引:0,他引:1  
任军 《生命科学》2005,17(5):445-448
西尼罗病毒(West Nile virus,WNV)属黄病毒科,为正单链RNA病毒。它在人类中的感染导致以发热为主要症状的传染性疾病,主要由蚊虫叮咬传播。自20世纪50年代首例报告西尼罗病毒自然感染所致脑炎后的几十年内,西尼罗病毒脑炎在欧洲及中亚地区散在、小规模流行。西尼罗病毒脑炎于1999年在美国的爆发及随后几年在北美的流行引起了极大的关注。这次爆发流行中新出现的种种迹象,如其中间宿主——野生鸟类的大量死亡,人类感染者中中枢神经系统受损比例的增高等,提示近期的遗传变异已使西尼罗病毒感染的病理学与流行病学发生了较显著的变化。另外,随着感染的流行,蚊虫叮咬以外的传播途径,如输血、器官移植、母婴传播等日益受到人们重视。同时,人们对阻止疫情所急需的疫苗的研制也在进行之中。本文就近几年来对西尼罗病毒的感染、免疫与流行病学方面的研究进展进行了综述。  相似文献   

5.
Infection with mosquito-borne West Nile virus (WNV) is usually asymptomatic but can lead to severe WNV encephalitis. The innate cytokine, macrophage migration inhibitory factor (MIF), is elevated in patients with WNV encephalitis and promotes viral neuroinvasion and mortality in animal models. In a case-control study, we examined functional polymorphisms in the MIF locus in a cohort of 454 North American patients with neuroinvasive WNV disease and found patients homozygous for high-expression MIF alleles to be >20-fold (p = 0.008) more likely to have WNV encephalitis. These data indicate that MIF is an important determinant of severity of WNV neuropathogenesis and may be a therapeutic target.  相似文献   

6.
Ye C  Abraham S  Wu H  Shankar P  Manjunath N 《PloS one》2011,6(3):e17889
West Nile (WN) and St. Louis encephalitis (SLE) viruses can cause fatal neurological infection and currently there is neither a specific treatment nor an approved vaccine for these infections. In our earlier studies, we have reported that siRNAs can be developed as broad-spectrum antivirals for the treatment of infection caused by related viruses and that a small peptide called RVG-9R can deliver siRNA to neuronal cells as well as macrophages. To increase the repertoire of broad-spectrum antiflaviviral siRNAs, we screened 25 siRNAs targeting conserved regions in the viral genome. Five siRNAs were found to inhibit both WNV and SLE replication in vitro reflecting broad-spectrum antiviral activity and one of these was also validated in vivo. In addition, we also show that RVG-9R delivers siRNA to macrophages and dendritic cells, resulting in effective suppression of virus replication. Mice were challenged intraperitoneally (i.p.) with West Nile virus (WNV) and treated i.v. with siRNA/peptide complex. The peritoneal macrophages isolated on day 3 post infection were isolated and transferred to new hosts. Mice receiving macrophages from the anti-viral siRNA treated mice failed to develop any disease while the control mice transferred with irrelevant siRNA treated mice all died of encephalitis. These studies suggest that early suppression of viral replication in macrophages and dendritic cells by RVG-9R-mediated siRNA delivery is key to preventing the development of a fatal neurological disease.  相似文献   

7.
Older adults exhibit higher morbidity and mortality from infectious diseases compared with those of the general population. The introduction and rapid spread of West Nile virus (WNV) throughout the continental United States since 1999 has highlighted the challenge of protecting older adults against emerging pathogens: to this day there is no therapy or vaccine approved for human use against West Nile encephalitis. In this study, we describe the characterization of T and B cell responses in old mice after vaccination with RepliVAX WN, a novel West Nile encephalitis vaccine based on single-cycle flavivirus particles. In adult mice, RepliVAX WN induced robust and long-lasting CD4(+) and CD8(+) T cell and Ab (B cell) responses against natural WNV epitopes, similar to those elicited by primary WNV infection. Primary and memory T and B cell responses in old mice against RepliVAX WN vaccination were significantly lower than those seen in younger mice, similar to the response of old mice to infection with WNV. Surprisingly, both the quality and the quantity of the recall Ab and T cell responses in vaccinated old mice were improved to equal or exceed those in adult animals. Moreover, these responses together (but not individually) were sufficient to protect both old and adult mice from severe WNV disease upon challenge. Therefore, at least two cycles of in vivo restimulation are needed for selection and expansion of protective lymphocytes in older populations, and live, single-cycle virus vaccines that stimulate both cellular and humoral immunity can protect older individuals against severe viral disease.  相似文献   

8.
West Nile virus (WNV) can cause fatal murine and human encephalitis. The viral envelope protein interacts with host cells. A murine brain cDNA phage display library was therefore probed with WNV envelope protein, resulting in the identification of several adherent peptides. Of these, peptide 1 prevented WNV infection in vitro with a 50% inhibition concentration of 67 muM and also inhibited infection of a related flavivirus, dengue virus. Peptide 9, a derivative of peptide 1, was a particularly potent inhibitor of WNV in vitro, with a 50% inhibition concentration of 2.6 muM. Moreover, mice challenged with WNV that had been incubated with peptide 9 had reduced viremia and fatality compared with control animals. Peptide 9 penetrated the murine blood-brain barrier and was found in the brain parenchyma, implying that it may have antiviral activity in the central nervous system. These short peptides serve as the basis for developing new therapeutics for West Nile encephalitis and, potentially, other flaviviruses.  相似文献   

9.
West Nile virus (WNV) is a zoonotic virus, which is transmitted by mosquitoes. It is the causative agent of the disease syndrome called West Nile fever. In some human cases, a WNV infection can be associated with severe neurological symptoms. The immune response to WNV is multifactorial and includes both humoral and cellular immunity. T-cell epitope mapping of the WNV envelope (E) protein has been performed in C57BL/6 mice, but not in BALB/c mice. Therefore, we performed in BALB/c mice a T-cell epitope mapping using a series of peptides spanning the WNV envelope (E) protein. To this end, the WNV-E specific T cell repertoire was first expanded by vaccinating BALB/c mice with a DNA vaccine that generates subviral particles that resemble West Nile virus. Furthermore, the WNV structural protein was expressed in Escherichia coli as a series of overlapping 20-mer peptides fused to a carrier-protein. Cytokine-based ELISPOT assays using these purified peptides revealed positive WNV-specific T cell responses to peptides within the different domains of the E-protein.  相似文献   

10.
West Nile virus (WNV) is a neurotropic, arthropod-borne flavivirus that has become a significant global cause of viral encephalitis. To examine the mechanisms of WNV-induced neuronal death and the importance of apoptosis in pathogenesis, we evaluated the role of a key apoptotic regulator, caspase 3. WNV infection induced caspase 3 activation and apoptosis in the brains of wild-type mice. Notably, congenic caspase 3(-/-) mice were more resistant to lethal WNV infection, although there were no significant differences in the tissue viral burdens or the kinetics of viral spread. Instead, decreased neuronal death was observed in the cerebral cortices, brain stems, and cerebella of caspase 3(-/-) mice. Analogously, primary central nervous system (CNS)-derived neurons demonstrated caspase 3 activation and apoptosis after WNV infection, and treatment with caspase inhibitors or a genetic deficiency in caspase 3 significantly decreased virus-induced death. These studies establish that caspase 3-dependent apoptosis contributes to the pathogenesis of lethal WNV encephalitis and suggest possible novel therapeutic targets to restrict CNS injury.  相似文献   

11.
Evans JD  Seeger C 《Journal of virology》2007,81(21):11809-11816
West Nile virus (WNV) is a human pathogen that can cause symptomatic infections associated with meningitis and encephalitis. Previously, we demonstrated that replication of WNV inhibits the interferon (IFN) signal transduction pathway by preventing the accumulation of phosphorylated Janus kinase 1 (JAK1) and tyrosine kinase 2 (Tyk2) (J. T. Guo et al., J. Virol. 79:1343-1350, 2005). Through a genetic analysis, we have now identified a determinant on the nonstructural protein 4B (NS4B) that controls IFN resistance in HeLa cells expressing subgenomic WNV replicons lacking the structural genes. However, in the context of infectious genomes, the same determinant did not influence IFN signaling. Thus, our results indicate that NS4B may be sufficient to inhibit the IFN response in replicon cells and suggest a role for structural genes, or as yet unknown interactions, in the inhibition of the IFN signaling pathway during WNV infections.  相似文献   

12.
Infection and injury of neurons by West Nile encephalitis virus   总被引:6,自引:0,他引:6       下载免费PDF全文
West Nile virus (WNV) infects neurons and leads to encephalitis, paralysis, and death in humans, animals, and birds. We investigated the mechanism by which neuronal injury occurs after WNV infection. Neurons in the anterior horn of the spinal cords of paralyzed mice exhibited a high degree of WNV infection, leukocyte infiltration, and degeneration. Because it was difficult to distinguish whether neuronal injury was caused by viral infection or by the immune system response, a novel tissue culture model for WNV infection was established in neurons derived from embryonic stem (ES) cells. Undifferentiated ES cells were relatively resistant to WNV infection. After differentiation, ES cells expressed neural antigens, acquired a neuronal phenotype, and became permissive for WNV infection. Within 48 h of exposure to an exceedingly low multiplicity of infection (5 x 10(-4)), 50% of ES cell-derived neurons became infected, producing nearly 10(7) PFU of infectious virus per ml, and began to die by an apoptotic mechanism. The establishment of a tractable virus infection model in ES cell-derived neurons facilitates the study of the molecular basis of neurotropism and the mechanisms of viral and immune-mediated neuronal injury after infection by WNV or other neurotropic pathogens.  相似文献   

13.

Background  

West Nile virus (WNV) infection can cause severe meningitis and encephalitis in humans. Apoptosis was recently shown to contribute to the pathogenesis of WNV encephalitis. Here, we used WNV-infected glioma cells to study WNV-replication and WNV-induced apoptosis in human brain-derived cells.  相似文献   

14.
Clinicoepidemiological data suggest that type 2 diabetes is associated with increased risk of West Nile virus encephalitis (WNVE). However, no experimental studies have elucidated the role of diabetes in WNV neuropathogenesis. Herein, we employed the db/db mouse model to understand WNV immunopathogenesis in diabetics. Nine-week old C57BL/6 WT and db/db mice were inoculated with WNV and mortality, virus burden in the periphery and brain, and antiviral defense responses were analyzed. db/db mice were highly susceptible to WNV disease, exhibited increased tissue tropism and mortality than the wild-type mice, and were unable to clear the infection. Increased and sustained WNV replication was observed in the serum, peripheral tissues and brain of db/db mice, and heightened virus replication in the periphery was correlated with enhanced neuroinvasion and replication of WNV in the brain. WNV infection in db/db mice was associated with enhanced inflammatory response and compromised antiviral immune response characterized by delayed induction of IFN-α, and significantly reduced concentrations of WNV-specific IgM and IgG antibodies. The compromised immune response in db/db mice correlated with increased viremia. These data suggest that delayed immune response coupled with failure to clear the virus leads to increased mortality in db/db mice. In conclusion, this study provides unique mechanistic insight into the immunopathogenesis of WNVE observed in diabetics and can be used to develop therapeutics for the management of WNVE among diabetic patients.  相似文献   

15.
West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2′–5′ oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans.  相似文献   

16.
Since the mid-1990s, West Nile virus (WNV) has emerged as a significant agent of arboviral encephalitis in several regions of the world. In 1999, WNV was introduced into the northeastern United States and was associated with an outbreak of encephalitis affecting humans, birds and horses. Subsequently, the virus has spread across the country, and across southern Canada, and in 2002 and 2003 was associated with the largest outbreaks of arboviral encephalitis recorded in the Western hemisphere. Interestingly, the more recent spread of WNV into Mexico, Central America and the Caribbean has not been associated with the high levels of clinical disease observed in North America. This review addresses the most recent results from studies investigating the molecular biology and evolution of WNV, as well as progress in the development of diagnostic and therapeutic reagents.  相似文献   

17.
West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.  相似文献   

18.
West Nile virus (WNV) is a re-emerging pathogen responsible for outbreaks of fatal meningoencephalitis in humans. Previous studies have suggested a protective role for monocytes in a mouse model of WNV infection, but the molecular mechanisms have remained unclear. In this study, we show that genetic deficiency in Ccr2, a chemokine receptor on Ly6c(hi) inflammatory monocytes and other leukocyte subtypes, markedly increases mortality due to WNV encephalitis in C57BL/6 mice; this was associated with a large and selective reduction of Ly6c(hi) monocyte accumulation in the brain. WNV infection in Ccr2(+/+) mice induced a strong and highly selective monocytosis in peripheral blood that was absent in Ccr2(-/-) mice, which in contrast showed sustained monocytopenia. When a 1:1 mixture of Ccr2(+/+) and Ccr2(-/-) donor monocytes was transferred by vein into WNV-infected Ccr2(-/-) recipient mice, monocyte accumulation in the CNS was not skewed toward either component of the mixture, indicating that Ccr2 is not required for trafficking of monocytes from blood to brain. We conclude that Ccr2 mediates highly selective peripheral blood monocytosis during WNV infection of mice and that this is critical for accumulation of monocytes in the brain.  相似文献   

19.
Local vector control and public health agencies in California use the California Mosquito-Borne Virus Surveillance and Response Plan to monitor and evaluate West Nile virus (WNV) activity and guide responses to reduce the burden of WNV disease. All available data from environmental surveillance, such as the abundance and WNV infection rates in Culex tarsalis and the Culex pipiens complex mosquitoes, the numbers of dead birds, seroconversions in sentinel chickens, and ambient air temperatures, are fed into a formula to estimate the risk level and associated risk of human infections. In many other areas of the US, the vector index, based only on vector mosquito abundance and infection rates, is used by vector control programs to estimate the risk of human WNV transmission. We built models to determine the association between risk level and the number of reported symptomatic human disease cases with onset in the following three weeks to identify the essential components of the risk level and to compare California’s risk estimates to vector index. Risk level calculations based on Cx. tarsalis and Cx. pipiens complex levels were significantly associated with increased human risk, particularly when accounting for vector control area and population, and were better predictors than using vector index. Including all potential environmental components created an effective tool to estimate the risk of WNV transmission to humans in California.  相似文献   

20.
The objective of this study was to examine the extrinsic risk factors of West Nile virus (WNV) clinical disease in Florida horses as established from confirmed and negative horses tested within the state from 2001 to 2003. An Arboviral Case Information Form (ACF) was submitted by a referring veterinarian at the time of testing to the Florida Department of Agriculture and Consumer Services on every horse suspected of a viral encephalitis in Florida. A follow‐up survey that focused on arbovirus prevention and farm ecology was created and mailed to the owner of each tested horse. Data from the follow‐up survey indicated peak WNV prevalence in the late summer months in Florida. Quarter horses were the most commonly affected breed. The WNV vaccine was highly protective and natural water on the property also had a protective association. Factors that increased the risk of WNV to horses were the use of fans and a stable construction of solid wood or cement. Some risk indicators were dead birds on the property and other ill animals on the property. Data from this retrospective study have helped identify factors associated with WNV transmission in equines in Florida. Horses that have not been vaccinated and show clinical signs of arboviral infection from June to November should be tested for WNV. Horses that have been vaccinated and show clinical signs should be tested when the vaccination was administered within 1 month or greater than 6 months prior to the onset of clinical symptoms associated with WN infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号