首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4-Amino-4-deoxychorismate lyase (ADCL) is a member of the fold-type IV of PLP dependent enzymes that converts 4-amino-4-deoxychorismate (ADC) to p-aminobenzoate and pyruvate. The crystal structure of ADCL from Escherichia coli has been solved using MIR phases in combination with density modification. The structure has been refined to an R-factor of 20.6% at 2.2 A resolution. The enzyme is a homo dimer with a crystallographic twofold axis, and the polypeptide chain is folded into small and large domains with an interdomain loop. The coenzyme, pyridoxal 5'-phosphate, resides at the domain interface, its re-face facing toward the protein. Although the main chain folding of the active site is homologous to those of D-amino acid and L-branched-chain amino acid aminotransferases, no residues in the active site are conserved among them except for Arg59, Lys159, and Glu193, which directly interact with the coenzyme and play critical roles in the catalytic functions. ADC was modeled into the active site of the unliganded enzyme on the basis of the X-ray structures of the unliganded and liganded forms in the D-amino acid and L-branched-chain amino acid aminotransferases. According to this model, the carboxylates of ADC are recognized by Asn256, Arg107, and Lys97, and the cyclohexadiene moiety makes van der Waals contact with the side chain of Leu258. ADC forms a Schiff base with PLP to release the catalytic residue Lys159, which forms a hydrogen bond with Thr38. The neutral amino group of Lys159 eliminates the a-proton of ADC to give a quinonoid intermediate to release a pyruvate in accord with the proton transfer from Thr38 to the olefin moiety of ADC.  相似文献   

2.
The metalloglutathione transferase FosA catalyzes the conjugation of glutathione to carbon-1 of the antibiotic fosfomycin, rendering it ineffective as an antibacterial drug. Codon randomization and selection for the ability of resulting clones to confer fosfomycin resistance to Escherichia coli were used to identify residues critical for FosA function. Of the 24 codons chosen for randomization, 16 were found to be essential because only the wild type amino acid was selected. These included ligands to the Mn(2+) and the K(+), residues that furnish hydrogen bonds to fosfomycin, and residues located in a putative glutathione/fosfomycin-binding site. The remaining eight positions randomized were tolerant to substitutions. Site-directed mutagenesis of some of the essential and tolerant amino acids to alanine was performed, and the activity of the purified proteins was determined. Mutation of the residues that are within hydrogen bonding distance to the oxirane or phosphonate oxygens of fosfomycin resulted in variants with very low or no activity. Mutation of Ser(94), which bridges one of the phosphonate oxygens with a potassium ion, resulted in insoluble protein. The Y39A mutation in the putative glutathione-binding site resulted in a 4-fold increase in the apparent K(m) for glutathione. Only two of the amino acids in the substrate-binding site are conserved in the related fosfomycin resistance proteins FosB and FosX, whereas no amino acids in the putative glutathione-binding site are conserved.  相似文献   

3.
Kinetic analysis of inactivation of isocitrate lyase from Pseudomonas indigofera by 3-bromopyruvate established that enzyme binds this compound prior to alkylation and that substrate, Ds-isocitrate, competes for the same site on the enzyme. The rate of inactivation was increased by EDTA which is a promoter of catalysis in the presence of activated (reduced) enzyme and substrate. The combination of products, glyoxylate plus succinate, also protected against inactivation. Glyoxylate plus itaconate, phosphoenolpyruvate, or maleate also protected. However, each of the latter three compounds or glyoxylate or succinate alone provided little or no protection. Pyruvate, a competitive inhibitor with respect to glyoxylate in the condensation reaction, also failed to protect. However, two dicarboxylates, meso-tartrate and oxalate, that are also competitive inhibitors with respect to glyoxylate provide some protection against inactivation by BrP perhaps by bridging across cationic sites that facilitate glyoxylate and succinate binding. These and other results imply that alkylation by 3-bromopyruvate occurs at the succinate part of the active site. A mechanism which includes a catalytic role for the cysteine residue at the active site is presented and discussed.  相似文献   

4.
Pseudomonas aeruginosa exotoxin A is representative of a class of enzymes, the monoADP-ribosyl, which catalyze the covalent transfer of an ADP-ribose moiety of NAD+ to a target substrate. Availability of the three-dimensional structure of exotoxin A provides the opportunity for mapping substrate binding sites and suggesting which amino acid residues may be involved in catalysis. Data from several sources have been combined to develop a proposal for the NAD+ binding site of exotoxin A: the binding of NAD+ fragments adenosine, AMP, and ADP have been delineated crystallographically to 6.0, 6.0, and 2.7 Å, respectively; significant sequence homology spanning 60 residues has been found between exotoxin A and diphtheria toxin, which has the identical enzymatic activity; iodination of exotoxin A, under conditions in which only tyrosine 481 is iodinated in the enzymatic domain, abolishes ADP-ribosyl transferase activity.  相似文献   

5.
Naught LE  Regni C  Beamer LJ  Tipton PA 《Biochemistry》2003,42(33):9946-9951
In Pseudomonas aeruginosa, the dual-specificity enzyme phosphomannomutase/phosphoglucomutase catalyzes the transfer of a phosphoryl group from serine 108 to the hydroxyl group at the 1-position of the substrate, either mannose 6-P or glucose 6-P. The enzyme must then catalyze transfer of the phosphoryl group on the 6-position of the substrate back to the enzyme. Each phosphoryl transfer is expected to require general acid-base catalysis, provided by amino acid residues at the enzyme active site. An extensive survey of the active site residues by site-directed mutagenesis failed to identify a single key residue that mediates the proton transfers. Mutagenesis of active site residues Arg20, Lys118, Arg247, His308, and His329 to residues that do not contain ionizable groups produced proteins for which V(max) was reduced to 4-12% of that of the wild type. The fact that no single residue decreased catalytic activity more significantly, and that several residues had similar effects on V(max), suggested that the ensemble of active site amino acids act by creating positive electrostatic potential, which serves to depress the pK of the substrate hydroxyl group so that it binds in ionized form at the active site. In this way, the necessity of positioning the reactive hydroxyl group near a specific amino acid residue is avoided, which may explain how the enzyme is able to promote catalysis of both phosphoryl transfers, even though the 1- and 6-positions do not occupy precisely the same position when the substrate binds in the two different orientations in the active site. When Ser108 is mutated, the enzyme retains a surprising amount of activity, which has led to the suggestion that an alternative residue becomes phosphorylated in the absence of Ser108. (31)P NMR spectra of the S108A protein confirm that it is phosphorylated. Although the S108A/H329N protein had no detectable catalytic activity, the (31)P NMR spectra were not consistent with a phosphohistidine residue.  相似文献   

6.
Protease IV is a lysine-specific endoprotease produced by Pseudomonas aeruginosa whose activity has been correlated with corneal virulence. Comparison of the protease IV amino acid sequence to other bacterial proteases suggested that amino acids His-72, Asp-122, and Ser-198 could form a catalytic triad that is critical for protease IV activity. To test this possibility, site-directed mutations by alanine substitution were introduced into six selected residues including the predicted triad and identical residues located close to the triad. Mutations at any of the amino acids of the predicted catalytic triad or Ser-197 caused a loss of enzymatic activity and absence of the mature form of protease IV. In contrast, mutations at His-116 or Ser-200 resulted in normal processing into the enzymatically active mature form. A purified proenzyme that accumulated in the His-72 mutant was shown in vitro to be susceptible to cleavage by protease IV purified from P. aeruginosa. Furthermore, similarities of protease IV to the lysine-specific endoprotease of Achromobacter lyticus suggested three possible disulfide bonds in protease IV. These results identify the catalytic triad of protease IV, demonstrate that autodigestion is essential for the processing of protease IV into a mature protease, and predict sites essential to enzyme conformation.  相似文献   

7.
8.
Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) lyase is irreversibly inactivated by the reactive substrate analog 2-butynoyl-CoA. Enzyme inactivation, which follows pseudo-first-order kinetics, is saturable with a KI = 65 microM and a limiting k(inact) of 0.073 min-1 at 23 degrees C, pH 7.2. Protection against inactivation is afforded by the competitive inhibitor 3-hydroxyglutaryl-CoA. Labeling of the bacterial enzyme with [1-14C]-2-butynoyl-CoA demonstrates that inactivation coincides with covalent incorporation of inhibitor, with an observed stoichiometry of modification of 0.65 per site. Avian HMG-CoA lyase is also irreversibly inactivated by 2-butynoyl-CoA with a stoichiometry of modification of 0.9 per site. Incubation of 2-butynoyl-CoA with mercaptans such as dithiothreitol results in the formation of a UV absorbance peak at 310 nm. Enzyme inactivation is also accompanied by the development of a UV absorbance peak at 310 nm indicating that 2-butynoyl-CoA modifies a cysteine residue in HMG-CoA lyase. Tryptic digestion and reverse-phase HPLC of the affinity-labeled protein reveal a single radiolabeled peptide. Isolation and sequence analysis of this peptide and a smaller chymotryptic peptide indicate that the radiolabeled residue is contained within the sequence GGXPY. Mapping of this peptide within the cDNA-deduced sequence of P. mevalonii HMG-CoA lyase [Anderson, D. H., & Rodwell, V. W. (1989) J. Bacteriol. 171, 6468-6472] confirms that a cysteine at position 237 is the site of modification. These data represent the first identification of an active-site residue in HMG-CoA lyase.  相似文献   

9.
The three-dimensional structures of the inactive conformations of Hck and Src, members of the Src protein-tyrosine kinase family, have recently been described. In both cases, the catalytic domain lies on the opposite face of the enzyme from the SH2 and SH3 domains. The active conformation of these enzymes has not yet been described. Given the known role of the SH2 and SH3 domains in promoting substrate binding, enzyme activation likely reorients the relative spatial arrangement between the SH2/SH3 domains and the active site region. We describe herein a series of "molecular rulers" and their use in assessing the topological and spatial relationships of the SH2 and active site regions of the Src protein-tyrosine kinase. These synthetic compounds contain sequences that are active site-directed (-Glu-Glu-Ile-Ile-(F(5))Phe-, where (F(5))Phe is pentafluorophenylalanine) and SH2-directed (-Tyr(P)-Glu-Glu-Ile-Glu-), separated by a sequence of variable length. The most potent bivalent compound, acetyl-Glu-Glu-Leu-Leu-(F(5))Phe-(GABA)(3)-Tyr(P)-Glu-Glu-Ile-Glu-amide (where GABA is gamma-aminobutyric acid), displays a >120-fold enhancement in inhibitory potency relative to the simple monovalent active site-directed species, acetyl-Glu-Glu-Leu-Leu-(F(5))Phe-amide. The short linker length (3 GABA residues) between the active site- and SH2-directed peptide fragments suggests that the corresponding domains on the Src kinase can assume a nearly contiguous spatial arrangement in the active form of the enzyme.  相似文献   

10.
Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.  相似文献   

11.
Porphobilinogen synthase catalyzes the first committed step of the tetrapyrrole biosynthesis pathway. In an aldol-like condensation, two molecules of 5-aminolevulinic acid (ALA) form the first pyrrole, porphobilinogen. Newly synthesized analogues of a reaction intermediate of porphobilinogen synthase have been employed in studying the active site and the catalytic mechanism of this early enzyme of tetrapyrrole biosynthesis. This study combines structural and kinetic evaluation of the inhibition potency of these inhibitors. In addition, one of the determined protein structures provides for the first time structural evidence of a magnesium ion in the active site. From these results, we can corroborate an earlier postulated enzymatic mechanism that starts with formation of a C-C bond, linking C3 of the A-side ALA to C4 of the P-side ALA through an aldole addition. The obtained data are discussed with respect to the current literature.  相似文献   

12.
R Bhat  A Marx  C Galanos    R S Conrad 《Journal of bacteriology》1990,172(12):6631-6636
Lipid A derived from Pseudomonas aeruginosa PAO1 contains a biphosphorylated 1-6-linked glucosamine disaccharide backbone. The reducing glucosamine has an unsubstituted glycosidically linked phosphate at C-1. The nonreducing glucosamine has an ester-bound phosphate at C-4' which is nonstoichiometrically substituted with 4-amino-4-deoxyarabinose. Induction of 4-amino-4-deoxyarabinose was dependent on cultural conditions. No pyrophosphate groups were detected. Acyloxyacyl diesters are formed by esterification of the amide-bound 3-hydroxydodecanoic acid with dodecanoic acid and 2-hydroxydodecanoic acids in an approximate molar ratio of 2:1. Dodecanoic and 3-hydroxydecanoic acids are esterified to positions C-3 and C-3' in the sugar backbone. All hydroxyl groups of the glucosamine disaccharide except C-4 and C-6' are substituted. Lipopolysaccharide chemical analyses measured glucose, rhamnose, heptose, galactosamine, alanine, phosphate, and glucosamine. The proposed lipid A structure differs from previous models. There are significant differences in acyloxyacyl diesters, and the proposed model includes an aminopentose substituent.  相似文献   

13.
14.
Abstract To overcome problems associated with Western blotting of denatured proteins, we have used quantitative immunoelectrophoretic techniques to perform functional analysis of the Neisseria gonorrhoeae common antigen. Using these techniques, we show (a) that Neisseria gonorrhoeae expresses an antigen that is cross-reactive with the common antigen of Pseudomonas aeruginosa and Legionella micdadei and with the GroEl-like protein of Chlamydia , and (b) that this N. gonorrhoeae common antigen has lectin-like activity and can be precipitated with three different sugars immobilized on agarose beads: α- d -glucosamine, maltose and fucose.  相似文献   

15.
BACKGROUND: In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocophenols. Homogentisate biosynthesis includes a decarboxylation step, a dioxygenation and a rearrangement of the pyruvate sidechain. This complex reaction is carried out by a single enzyme, the 4-hydroxyphenylpyruvate dioxygenase (HPPD), a non-heme iron dependent enzyme that is active as a homotetramer in bacteria and as a homodimer in plants. Moreover, in humans, a HPPD deficiency is found to be related to tyrosinemia, a rare hereditary disorder of tyrosine catabolism. RESULTS: We report here the crystal structure of Pseudomonas fluorescens HPPD refined to 2.4 A resolution (Rfree 27.6%; R factor 21.9%). The general topology of the protein comprises two barrel-shaped domains and is similar to the structures of Pseudomonas 2,3-dihydroxybiphenyl dioxygenase (DHBD) and Pseudomonas putida catechol 2,3-dioxygenase (MPC). Each structural domain contains two repeated betaalpha betabeta betaalpha modules. There is one non-heme iron atom per monomer liganded to the sidechains of His161, His240, Glu322 and one acetate molecule. CONCLUSIONS: The analysis of the HPPD structure and its superposition with the structures of DHBD and MPC highlight some important differences in the active sites of these enzymes. These comparisons also suggest that the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate) and the O2 molecule would occupy the three free coordination sites of the catalytic iron atom. This substrate-enzyme model will aid the design of new inhibitors of the homogentisate biosynthesis reaction.  相似文献   

16.
He Z  Toney MD 《Biochemistry》2006,45(15):5019-5028
Chorismate-utilizing enzymes catalyze diverse reactions, providing critical physiological functions unique to plants, bacteria, fungi, and some parasites. Their absence in animals makes them excellent targets for antimicrobials and herbicides. 4-Amino-4-deoxychorismate synthase (ADCS) catalyzes the first step in folate biosynthsis and shares a common core mechanism with isochorismate synthase (IS) and anthranilate synthase (AS), in which nucleophile addition at C2 initiates these reactions. Evidence was presented previously [He, Z., Stigers Lavoie, K. D., Bartlett, P. A., and Toney, M. D. (2004) J. Am. Chem. Soc. 126, 2378-2385] that K274 is the nucleophile in ADCS, implying formation of a covalent intermediate. Herein, we report the direct detection of this covalent intermediate formed in ADCS-catalyzed reactions by ESI-MS. Difference spectra show the covalent intermediate has an absorption maximum at 310 nm. This was used to study the pre-steady-state kinetics of covalent intermediate formation under various conditions. Additionally, E258 in ADCS was shown to be critical to formation of the covalent intermediate by acting as a general acid catalyst for loss of the C4 hydroxyl group. The E258A/D mutants both exhibit very low activity. Acetate is a poor chemical rescue agent for E258D but an excellent one for E258A, with a 20000-fold and 3000-fold rate increase for Gln-dependent and NH(4)(+)-dependent activities, respectively. Lastly, A213 in IS (structurally homologous to K274 in ADCS) was changed to lysine in an attempt to convert IS to an ADCS-like enzyme. HPLC studies support the formation of a covalent intermediate with this mutant.  相似文献   

17.
18.
Previous sequence analyses have suggested the existence of two distinct classes of aminoacyl-tRNA synthetase. The partition was established on the basis of exclusive sets of sequence motifs (Eriani et al. [1990] Nature 347:203–306). X-ray studies have now well defined the structural basis of the two classes: the class I enzymes share with dehydrogenases and kinases the classic nucleotide binding fold called the Rossmann fold, whereas the class II enzymes possess a different fold, not found elsewhere, built around a six-stranded antiparallel -sheet. The two classes of synthetases catalyze the same global reaction that is the attachment of an amino acid to the tRNA, but differ as to where on the terminal adenosine of the tRNA the amino acid is placed: class I enzymes act on the 2 hydroxyl whereas the class II enzymes prefer the 3 hydroxyl group. The three-dimensional structure of aspartyl-tRNA synthetase from yeast, a typical class II enzyme, is described here, in relation to its function. The crucial role of the sequence motifs in substrate binding and enzyme structure is high-lighted. Overall these results underline the existence of an intimate evolutionary link between the aminoacyl-tRNA synthetases, despite their actual structural diversity.Based on a presentation made at a workshop— Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: G. Eriani  相似文献   

19.
Staphylolytic enzyme, a specific peptidase produced by Pseudomonas aeruginosa, has been characterized by using immunochemical procedures. Lytic activity was detected in the extracellular medium of Pseudomonas cultures at the beginning of the stationary growth phase. No activity was detected in bacterial cells. However, lytic protein antigen was present in periplasmic and cytoplasmic fractions, suggesting that staphylolytic enzyme is synthesized as an inactive precursor which becomes active during translocation to the extracellular broth. Results obtained in immunolocalization experiments indicate the presence of the precursor in the outer part of cells. The export pathway of staphylolytic enzyme through the periplasmic space is proposed.Abbreviations DCE dialyzed crude extract - CFU colonies forming units - LU lytic unit  相似文献   

20.
Tyrosine ammonia lyase (TAL) catalyzes the conversion of L-tyrosine to p-coumaric acid using a 3,5-dihydro-5-methylidene-4H-imidazole-4-one (MIO) prosthetic group. In bacteria, TAL is used for production of the photoactive yellow protein chromophore and for caffeic acid biosynthesis in certain actinomycetes. Here we biochemically examine wild-type and mutant forms of TAL from Rhodobacter sphaeroides (RsTAL). Kinetic analysis of RsTAL shows that the enzyme displays a 90-fold preference for L-tyrosine versus L-phenylalanine as a substrate. The pH-dependence of TAL activity with L-tyrosine and L-phenylalanine demonstrates a common protonation state for catalysis, but indicates a difference in charge-state for binding of either amino acid. Site-directed mutagenesis demonstrates that Ser150, Tyr60, and Tyr300 are essential for catalysis. Mutation of Ser150 to an alanine abrogates formation of the MIO prosthetic group, as shown by mass spectrometry, and prevents catalysis. The Y60F and Y300F mutants were inactive with both amino acid substrates, but bound p-coumaric and cinnamic acids with less than 12-fold changes in affinity compared the wild-type enzyme. Analysis of MIO-dithiothreitol adduct formation shows that the reactivity of the prosthetic group is not significantly altered by mutation of either Tyr60 or Tyr300. The mechanistic roles of Ser150, Tyr60, and Tyr300 are discussed in relation to the three-dimensional structure of RsTAL and related MIO-containing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号