首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
RNA-mediated interference (RNAi) is a method to inhibit gene function by introduction of double-stranded RNA (dsRNA). Recently, an RNAi library was constructed that consists of bacterial clones expressing dsRNA, corresponding to nearly 90% of the 19,427 predicted genes of C. elegans. Feeding of this RNAi library to the standard wild-type laboratory strain Bristol N2 detected phenotypes for approximately 10% of the corresponding genes. To increase the number of genes for which a loss-of-function phenotype can be detected, we undertook a genome-wide RNAi screen using the rrf-3 mutant strain, which we found to be hypersensitive to RNAi. Feeding of the RNAi library to rrf-3 mutants resulted in additional loss-of-function phenotypes for 393 genes, increasing the number of genes with a phenotype by 23%. These additional phenotypes are distributed over different phenotypic classes. We also studied interexperimental variability in RNAi results and found persistent levels of false negatives. In addition, we used the RNAi phenotypes obtained with the genome-wide screens to systematically clone seven existing genetic mutants with visible phenotypes. The genome-wide RNAi screen using rrf-3 significantly increased the functional data on the C. elegans genome. The resulting dataset will be valuable in conjunction with other functional genomics approaches, as well as in other model organisms.  相似文献   

2.
Regulation of microtubule growth is critical for many cellular processes, including meiosis, mitosis, and nuclear migration. We carried out a genome-wide RNAi screen in Caenorhabditis elegans to identify genes required for pronuclear migration, one of the first events in embryogenesis requiring microtubules. Among these, we identified and characterized tac-1 a new member of the TACC (Transforming Acidic Coiled-Coil) family [1]. tac-1(RNAi) embryos exhibit very short microtubules nucleated from the centrosomes as well as short spindles. TAC-1 is initially enriched at the meiotic spindle poles and is later recruited to the sperm centrosome. TAC-1 localization at the centrosomes is regulated during the cell cycle, with high levels during mitosis and a reduction during interphase, and is dependent on aurora kinase 1 (AIR-1), a protein involved in centrosome maturation. tac-1(RNAi) embryos resemble mutants of zyg-9, which encodes a previously characterized centrosomal protein of the XMAP215 family and was also found in our screen. We show that TAC-1 and ZYG-9 are dependent on one another for their localization at the centrosome, and this dependence suggests that they may function together as a complex. We conclude that TAC-1 is a major regulator of microtubule length in the C. elegans embryo.  相似文献   

3.
Cell culture is an invaluable tool for investigation of basic biological processes. However, technical hurdles including low cell yield, poor cell differentiation and poor attachment to the growth substrate have limited the use of this tool for studies of the genetic model organism Caenorhabditis elegans. This protocol describes a method for the large-scale culture of C. elegans embryo cells. We also describe methods for in vitro RNA interference, fluorescence-activated cell sorting of embryo cells and imaging of cultured cells for patch-clamp electrophysiology studies. Developing embryos are isolated from gravid adult worms. After eggshell removal by enzymatic digestion, embryo cells are dissociated and plated onto glass substrates. Isolated cells terminally differentiate within 24 h. Analysis of gene expression patterns and cell-type frequency suggests that in vitro embryo cell cultures recapitulate the developmental characteristics of L1 larvae. Cultured embryo cells are well suited for physiological analysis as well as molecular and cell biological studies. The embryo cell isolation protocol can be completed in 5-6 h.  相似文献   

4.
Many RNAs show polarized or otherwise non-random subcellular distributions. To create a method for genome-wide genetic screens for RNAs with asymmetric subcellular distributions, we have combined methods for gene tagging and live imaging of messenger RNA (mRNA). A pilot screen in a highly polarized, differentiated cell in the Drosophila larva, the branched terminal cell of the tracheal system, demonstrates the feasibility of the method for identifying new asymmetrically localized mRNAs in vivo.  相似文献   

5.
6.
The establishment of avian embryonic culture is important both for the analysis of the developmental process and the establishment of transgenic chickens that produce useful biological materials in eggs. However, the hatchability of cultured embryos has been ∼50%. We identified that the low rate of hatchability of cultured embryos was caused by limited oxygen and calcium availability. In quail embryo culture using chicken eggshell as a culture vessel,viability in the middle stage of culture was improved and 30% of embryos were hatched by oxygen enrichment. Furthermore, hatchability increased to 80% by supplementation with calcium lactate in addition to oxygen aeration. In the present study, a fully artificial vessel for quail embryo culture was designed using a gas-permeable Teflon membrane. By the addition of fine eggshell powder and calcium lactate, quail embryos grew and developed normally, and 43% of embryos hatched. Although the hatchability was lower than that of cultures using a surrogate eggshell, we achieved in hatching an avian embryo using a fully artificial vessel.  相似文献   

7.
During mitosis, chromosome segregation is regulated by a spindle checkpoint mechanism. This checkpoint delays anaphase until all kinetochores are captured by microtubules from both spindle poles, chromosomes congress to the metaphase plate, and the tension between kinetochores and their attached microtubules is properly sensed. Although the spindle checkpoint can be activated in many different cell types, the role of this regulatory mechanism in rapidly dividing embryonic animal cells has remained controversial. Here, using time-lapse imaging of live embryonic cells, we show that chemical or mutational disruption of the mitotic spindle in early Caenorhabditis elegans embryos delays progression through mitosis. By reducing the function of conserved checkpoint genes in mutant embryos with defective mitotic spindles, we show that these delays require the spindle checkpoint. In the absence of a functional checkpoint, more severe defects in chromosome segregation are observed in mutants with abnormal mitotic spindles. We also show that the conserved kinesin CeMCAK, the CENP-F-related proteins HCP-1 and HCP-2, and the core kinetochore protein CeCENP-C all are required for this checkpoint. Our analysis indicates that spindle checkpoint mechanisms are functional in the rapidly dividing cells of an early animal embryo and that this checkpoint can prevent chromosome segregation defects during mitosis.  相似文献   

8.
Confocal live imaging is a key tool for studying cell behavior in the whole zebrafish embryo. Here we provide a detailed protocol that is adaptable for imaging any progenitor cell behavior in live zebrafish embryos. As an example, we imaged the emergence of the first hematopoietic stem cells from the aorta. We discuss the importance of selecting the appropriate zebrafish transgenic line as well as methods for immobilization of embryos to be imaged. In addition, we highlight the confocal microscopy acquisition parameters required for stem cell imaging and the software tools we used to analyze 4D movies. The whole protocol takes 2 h 15 min and allows confocal live imaging from a few hours to several days.  相似文献   

9.
Cell rearrangements are crucial during development. In this study, we use C. elegans gastrulation as a simple model to investigate the mechanisms of cell positioning. During C. elegans gastrulation, two endodermal precursor cells move from the ventral surface to the center of the embryo, leaving a gap between these ingressing cells and the eggshell. Six neighboring cells converge under the endodermal precursors, filling this gap. Using an in vitro system, we observed that these movements occurred consistently in the absence of the eggshell and the vitelline envelope. We found that movement of the neighbors towards each other is not dependent on chemotactic signaling between these cells. We further found that C. elegans gastrulation requires intact microfilaments, but not microtubules. The primary mechanism of microfilament-based motility does not appear to be through protrusive structures, such as lamellipodia or filopodia. Instead, our results suggest an alternative mechanism. We found that myosin activity is required for gastrulation, that the apical sides of the ingressing cells contract, and that the ingressing cells determine the direction of movement of their neighboring cells. Based on these results, we propose that ingression is driven by an actomyosin-based contraction of the apical side of the ingressing cells, which pulls neighboring cells underneath. We conclude that apical constriction can function to position blastomeres in early embryos, even before anchoring junctions form between cells.  相似文献   

10.
Alignment of the mitotic spindle along a preformed axis of polarity is crucial for generating cell diversity in many organisms, yet little is known about the role of the endomembrane system in this process. RAB-11 is a small GTPase enriched in recycling endosomes. When we depleted RAB-11 by RNAi in Caenorhabditis elegans, the spindle of the one-cell embryo failed to align along the axis of polarity in metaphase and underwent violent movements in anaphase. The distance between astral microtubules ends and the anterior cortex was significantly increased in rab-11(RNAi) embryos specifically during metaphase, possibly accounting for the observed spindle alignment defects. Additionally, we found that normal ER morphology requires functional RAB-11, particularly during metaphase. We hypothesize that RAB-11, in conjunction with the ER, acts to regulate cell cycle-specific changes in astral microtubule length to ensure proper spindle alignment in Caenorhabditis elegans early embryos.  相似文献   

11.
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.  相似文献   

12.
Neothyonidioside is a triterpene glycoside (TG) isolated from the sea cucumber, Australostichopus mollis, that is potently cytotoxic to S. cerevisiae, but does not permeabilize cellular membranes. We mutagenized S. cerevisiae and isolated a neothionidioside-resistant (neo(R)) strain. Using synthetic genetic array mapping and sequencing, we identified NCP1 as the resistance locus. Quantitative HPLC revealed that neo(R)/ncp1 mutants have reduced ergosterol content. Ergosterol added to growth media reversed toxicity, demonstrating that neothionidioside binds directly to ergosterol, similar to the polyene natamycin. Ergosterol synthesis inhibitors ketoconazole and atorvastatin conferred resistance to neothionidioside in a dose-dependent manner showing that a threshold ergosterol concentration is required for toxicity. A genome-wide screen of deletion mutants against neothionidioside revealed hypersensitivity of many of the component genes in the ESCRT complexes relating to multivesicular body formation. Confocal microscopy of cells stained with a vital dye showed blockage at this step. Thus, we propose neothionidioside may affect membrane curvature and fusion capability in the endosome-vacuole pathway.  相似文献   

13.
使用小鼠乳清酸蛋白基因(WAP)启动子控制下的人集落刺激因子(G-CSF)基因为显微注射片段,采用PCR方法检测了转基因胚,为消除PCR扩增中的假阳性结果,构建了两个具有部分同源性的亚克隆片段进行共注射.PCR扩增片段跨越这一同源区域,仅当注射的片段能够整合并发生正常重组,转基因整合胚才能以相对高的比例扩增出特异性片段.结果表明,1、2和8细胞期的阳性率分别为11.1%、55.5%和44.4%,较常规PCR检测获得更为明确的结论,为在大动物转基因胚胎检测提供了依据  相似文献   

14.
Polley SR  Fay DS 《Genetics》2012,191(4):1367-1380
The Caenorhabditis elegans pRb ortholog, LIN-35, functions in a wide range of cellular and developmental processes. This includes a role of LIN-35 in nutrient utilization by the intestine, which it carries out redundantly with SLR-2, a zinc-finger protein. This and other redundant functions of LIN-35 were identified in genetic screens for mutations that display synthetic phenotypes in conjunction with loss of lin-35. To explore the intestinal role of LIN-35, we conducted a genome-wide RNA-interference-feeding screen for suppressors of lin-35; slr-2 early larval arrest. Of the 26 suppressors identified, 17 fall into three functional classes: (1) ribosome biogenesis genes, (2) mitochondrial prohibitins, and (3) chromatin regulators. Further characterization indicates that different categories of suppressors act through distinct molecular mechanisms. We also tested lin-35; slr-2 suppressors, as well as suppressors of the synthetic multivulval phenotype, to determine the spectrum of lin-35-synthetic phenotypes that could be suppressed following inhibition of these genes. We identified 19 genes, most of which are evolutionarily conserved, that can suppress multiple unrelated lin-35-synthetic phenotypes. Our study reveals a network of genes broadly antagonistic to LIN-35 as well as genes specific to the role of LIN-35 in intestinal and vulval development. Suppressors of multiple lin-35 phenotypes may be candidate targets for anticancer therapies. Moreover, screening for suppressors of phenotypically distinct synthetic interactions, which share a common altered gene, may prove to be a novel and effective approach for identifying genes whose activities are most directly relevant to the core functions of the shared gene.  相似文献   

15.
16.
In a genome-wide RNA-mediated interference screen for genes required in membrane traffic - including endocytic uptake, recycling from endosomes to the plasma membrane, and secretion - we identified 168 candidate endocytosis regulators and 100 candidate secretion regulators. Many of these candidates are highly conserved among metazoans but have not been previously implicated in these processes. Among the positives from the screen, we identified PAR-3, PAR-6, PKC-3 and CDC-42, proteins that are well known for their importance in the generation of embryonic and epithelial-cell polarity. Further analysis showed that endocytic transport in Caenorhabditis elegans coelomocytes and human HeLa cells was also compromised after perturbation of CDC-42/Cdc42 or PAR-6/Par6 function, indicating a general requirement for these proteins in regulating endocytic traffic. Consistent with these results, we found that tagged CDC-42/Cdc42 is enriched on recycling endosomes in C. elegans and mammalian cells, suggesting a direct function in the regulation of transport.  相似文献   

17.
The embryo phenotyping of genetic murine model is invaluable when investigating functions of genes underlying embryonic development and birth defect. Although traditional imaging technologies such as ultrasound are very useful for evaluating phenotype of murine embryos, the use of advanced techniques for phenotyping is desirable to obtain more information from genetic research. This letter tests the feasibility of optical coherence tomography (OCT) as a high‐throughput phenotyping tool for murine embryos. Three‐dimensional OCT imaging is performed for live and cleared mouse embryos in the late developmental stage (embryonic day 17.5). By using a dynamic focusing method and OCT angiography (OCTA) approach, our OCT imaging of the embryo exhibits rapid and clean visualization of organ structures deeper than 5 mm and complex microvasculature of perfused blood vessels in the murine embryonic body. This demonstration suggests that OCT imaging can be useful for comprehensively assessing embryo anatomy and angiography of genetically engineered mice.  相似文献   

18.
Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS-induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS.  相似文献   

19.
A dramatic reorganization of cytoplasm occurs during the first cell cycle in embryos of the nematode, Caenorhabditis elegans. We present here the results of a quantitative study of some of the events during this reorganization in wild-type embryos and in par mutant embryos. The par mutations define a set of genes required for cytoplasmic localization in early embryos. We show that par mutations lead to defects in several events of the reorganization. Mutations in all four of the par genes we studied lead to defects in pseudocleavage and asymmetric redistribution of cortical microfilaments. In addition, some of the par mutations affect streaming of cytoplasm, migration of the pronuclei, and asymmetric shortening of the embryo. We propose that the major function of the par genes might be to orchestrate this initial reorganization of cytoplasm.  相似文献   

20.
The asymmetric division of the one-cell Caenorhabditis elegans zygote gives rise to two cells of different size and fate, thereby establishing the animal's anterior--posterior (a-p) axis. Through genetics, a number of genes required for this polarity have been characterized, but many components remain unidentified. Recently, our laboratory discovered a mutation in the pod-1 gene (for polarity and osmotic defective) that uniquely perturbed polarity and osmotic protection. Here, we describe a new C. elegans polarity gene identified during screens for conditional embryonic lethals. Embryos in which this gene has been mutated show a loss of physical and developmental asymmetries in the one-cell embryo, including the mislocalization of PAR and POD-1 proteins required for early polarity. Furthermore, mutant embryos are osmotically sensitive, allowing us to designate this gene pod-2. Thus, pod-2, along with pod-1, defines a new class of C. elegans polarity genes. Genetic analyses indicate that pod-2 functions in the same pathway as pod-1. Temperature-shift studies indicate that pod-2 is required during oogenesis, indicating that aspects of embryonic polarization may precede fertilization. pod-2 mutant embryos also exhibit a unique germline inheritance defect in which germline identity localizes to the wrong spot in the one-cell embryo and is therefore inherited by the wrong cell at the four-cell stage. Our data suggest that pod-2 may be required to properly position an a-p polarity cue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号