首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Equatorial X-ray diffraction patterns were recorded from small bundles of one to three chemically skinned frog sartorius muscle fibres (time resolution 250 microseconds) during rapid stretch and subsequent release. In the relaxed state, the dynamic A-band lattice spacing change as a result of a 2 % step stretch (determined from the positions of the 10 and 11 reflections) resulted in a 21 % increase in lattice volume, while static studies of spacing and sarcomere length indicated than an increase in volume of >/=50 % for the same length change. In rigor, stretch caused a lattice volume decrease which was reversed by a subsequent release. In activated fibres (pCa 4.5) exposed to 10 mM 2,3-butanedione 2-monoxime (BDM), stretch was accompanied by a lattice compression exceeding that of constant volume behaviour, but during tension recovery, compression was partially reversed to leave a net spacing change close to that observed in the relaxed fibre. In the relaxed state, spacing changes were correlated with the amplitude of the length step, while in rigor and BDM states, spacing changes correlated more closely with axial force. This behaviour is explicable in terms of two components of radial force, one due to structural constraints as seen in the relaxed state, and an additional component arising from cross-bridge formation. The ratio of axial to radial force for a single thick filament resulting from a length step was four in rigor and BDM, but close to unity for the relaxed state.  相似文献   

2.
Using the intensity of the outer part of the second actin layer line as an indicator of thin filament conformation in vertebrate muscle we were able to identify the four different states of rest, and the three states induced by the presence of Ca2+ ions, rigor bridge attachment and actively cycling bridges, respectively. These findings are in qualitative agreement with a number of biochemical studies by Eisenberg and Greene and others, indicating that activation of the thin filament depends both on Ca2+ ions and crossbridge binding. Yet quantitatively, the biochemical data and our structural data are contradictory. Whereas the biochemical studies suggest a strong coupling between structural changes of the thin filament and the ATPase activity, the structural studies indicate that this is not necessarily the case.Troponin molecules also change their conformation upon activation depending on both Ca2+ ions and crossbridge binding as demonstrated by the early part of the time course of the thin filament meridional reflections in contracting frog muscle.Low ionic strength which has been shown by Brenner and collaborators to increase weakly binding crossbridges in relaxed rabbit psoas muscle does not influence the intensity of the second actin layer line in this muscle. Yet in contracting frog muscle the increase of the second actin layer line increases very rapidly in one step, suggesting that weak binding bridges which are attached to actin prior to force production may indeed influence the thin filament conformation. It therefore appears that weakly bound bridges in the low ionic strength state do not have the same effect on the thin filament conformation as weakly bound bridges in an actively contracting muscle.Arthropod muscles like the thin filament regulated lobster muscles differ from vertebrate muscle in not showing an increase of the second layer line during contraction, which may have to do with differences in crossbridge attachment. The myosin-regulated molluscan muscle ABRM shows a large increase on the second actin layer line upon phasic contraction and a much smaller increase in catch or rigor, indicating that actively cycling bridges influence the thin filament conformation differently than catch or rigor bridges.Several pieces of evidence which we have briefly outlined in this paper suggest that the thin filament conformational changes we have observed do not arise solely from tropomyosin movements and that conformational changes of actin domains should be considered.  相似文献   

3.
Light diffraction patterns from isolated frog semitendinosus muscle fibers were examined. When transilluminated by laser light, the muscle striations produce a diffraction pattern consisting of a series of lines that are projected as points onto an optical detector by a lens system. Diffraction data may be sequentially stored every 18 ms for later processing by digital computer systems. First- and second-order diffraction line intensities were examined from intact, chemically skinned, and glycerinated single fibers. The diffraction line intensities demonstrated a strong length dependence upon passive stretch from reference length to 3.6 micrometer. The first-order intensity linearly increased an average of 15-fold over the range examined. The magnitude of the second order intensity was less than the first order and showed an exponential rise with increasing length. Both first- and second-order intensities decreased upon muscle activation. Data from chemically skinned and glycerinated single fibers were not significantly different from intact fibers, indicating that the membrane structure has little effect upon the diffraction phenomenon in muscle. Theoretical model systems are examined in an attempt to find the basis of these results. Neither an analysis based on a diffraction grating with variable spacing nor the unit cell model of Fujime provides an explanation for the observed length dependency of intensity. Though the origin of the intensity decrease upon stimulation is not known, we have suggested that it could result from lateral misalignment of myofibrils and can occur upon activation.  相似文献   

4.
From X-ray diffraction studies it is generally believed that B-DNA has the structural parameters n = 10 and h = 3.4 Å. However, for the first time we report that polymorphism in the B-form can be observed in DNA fibres. This was achieved by the precise control of salt and humidity in fibres and by the application of the precession method of X-ray diffraction to DNA fibres. The significant result obtained is that n = 10 is not observed for crystalline fibre patterns. In fact, n = 10 and h = 3.4 Å are not found to occur simultaneously. Instead, a range of values, n = 9.6–10.0 and h = 3.35 Å–3.41 Å is observed.  相似文献   

5.
6.
Recent studies on the interference fringes in the myosin meridional reflections provide a new source of structural information on cross-bridge movement during mechanical transients and steady shortening. Many observations can be interpreted satisfactorily by the tilting lever-arm model, with some assumptions, including the presence of fixed repeating structures contributing to the M3 and higher-order meridional reflections. In isometric contraction, the lever arms are oriented near the start of the working stroke, with a dispersion of ca+/-20-25 degrees . Upon a rapid release of 10-12 nm, they move to the end of the stroke, with a well-known T2 delay of 1-2 ms. This delay must represent additional processes, which have to occur even in tension-generating heads, or activation of attached heads, which initially do not develop force. Surprisingly, in muscles shortening at moderate loads (0.5-0.6 P0), the mean position of the heads moves only 2-3 nm closer to the M-line than in the isometric case, reminiscent of the Piazzesi-Lombardi model.  相似文献   

7.
Muscle contraction is generally thought to involve changes in the orientation of myosin crossbridges during their ATP-driven cyclical interaction with actin. We have investigated crossbridge orientation in equilibrium states of the crossbridge cycle in demembranated fibres of frog and rabbit muscle, using a novel combination of techniques: birefringence and X-ray diffraction. Muscle birefringence is sensitive to both crossbridge orientation and the transverse spacing of the contractile filament lattice. The latter was determined from the equatorial X-ray diffraction pattern, allowing accurate characterization of the orientation component of birefringence changes. We found that this component decreased when relaxed muscle fibres were put into rigor at rest length, and when either the ionic strength or temperature of relaxed fibres was lowered. In each case the birefringence decrease was accompanied by an increase in the intensity of the (1,1) equatorial X-ray reflection relative to that of the (1,0) reflection. When fibres that had been stretched largely to eliminate overlap between actin- and myosin-containing filaments were put into rigor, there was no change in the orientation component of the birefringence. When isolated myosin subfragment-1 was bound to these rigor fibres, the orientation component of the birefringence increased. The birefringence changes at rest length are likely to be due to changes in the orientation of myosin crossbridges, and in particular of the globular head region of the myosin molecules. In relaxed fibres from rabbit muscle, at 100 mM ionic strength, 15 degrees C, the long axis of the heads appears to be relatively well aligned with the filament axis. When fibres are put into rigor, or the temperature or ionic strength is lowered, the degree of alignment decreases and there is a transfer of crossbridge mass towards the actin-containing filaments.  相似文献   

8.
9.
When DNA fibres are stretched during drying, the polymer undergoes a conformational transition. We present quantitative results from X-ray diffraction studies on such fibres held at various ambient relative humidities. These indicate that the molecules are arranged in arrays which are crystalline in projection down the fibre axis. The packing can be explained in terms of a hexagonal cell with a lattice parameter, a, of approximately 13 A which varies with humidity. The patterns contain meridional intensities at 1/3.4 A(-1) and 1/6.5 A(-1), a strong off-meridional intensity at Z=1/5.6 A(-1) and diffuse scatter at Z=1/28 A(-1).  相似文献   

10.
11.
A position-sensitive optical diffractometer has been used to examine the diffraction spectra produced by single skeletal muscle fibers during twitch and tetanic contraction. First-order diffraction lines were computer-analyzed for mean sarcomere length, line intensity, and percent dispersion in sarcomere length. Line intensity was observed to decrease rapidly by about 60 percent during a twitch, with an exponential recovery to resting intensity persisting well beyond cessation of sarcomere shortening; recovery was particularly prolonged at zero myofilament overlap. A number of single fibers at initial lengths from 2.5 to 3.5 MICRON EXHIBITED a splitting of the first-order line into two or more components during relaxation, with components merging back into a single peak by 200 ms after stimulation. This splitting reflects the asynchronous nature of myofibrillar relaxation within a single fiber. During tetanus, the dispersion decreased by more than 10 percent from onset to plateau, implying a gradual stabilization of sarcomeres.  相似文献   

12.
In recent papers, it has been shown experimentally that the force-velocity relationship in single muscle fibres presents deviations from hyperbolicity at high values of the load (Edman, Mulieri & Scubon-Mulieri, 1976; Edman & Hwang,1977). It has been shown independently and on theoretical bases, that the parameter “b” in Hill's characteristic equation also presents deviations from its normal value at low values of the speed of shortening, i.e. at high values of the load (Morel, Pinset-Härström & Gingold, 1976). In the present paper, it is shown that both the experimental and the theoretical results are in excellent agreement and a theoretical force-velocity relationship is proposed.  相似文献   

13.
Equatorial X-ray diffraction patterns from single skinned fibres from bony fish muscle (turbot) were obtained with the fibres at 6 degrees C bathed in relaxing solutions of 170 down to 26 mM ionic strength. Diffraction patterns from rigor fibres were also obtained as controls. Unlike fibres from rabbit muscle, which show very clear evidence of substantial crossbridge formation at low ionic strength in what is mechanically a rapid equilibrium ("weak-binding") state (Brenner et al., 1982), diffraction patterns from bony fish fibres showed only a small change in relative peak intensities at low ionic strength (26 mM) compared with normal (170 mM) ionic strength. However, there was a slight ordering of the filament lattice at low ionic strength. The specimen temperature used (about 6 degrees C) was not far from the normal physiological temperature of the fish. Likewise, only a small change was seen by Xu et al. (1987) in patterns from frog fibres at low ionic strength at 2 to 6 degrees C. (Rabbit fibres previously studied, where large changes were seen at temperatures of 5 to 20 degrees C, were about 17 to 32 degrees C below physiological.) The I11/I10 ratio for fish fibres at 26 mM ionic strength was actually lower than that for rabbit even at normal ionic strength. This may be associated with an intrinsic structural difference between these muscles or alternatively with the disordering of the crossbridge helix in rabbit muscle found at low temperature by Wray (1987), and could support the view that rabbit fibres at 5 degrees C and normal ionic strength may already have a significant population of weak-binding crossbridges.  相似文献   

14.
Single fibres from the semitendinosus muscle of frog were illuminated normally with a He–Ne laser. The intensity transient and fine structure pattern of light diffracted from the fibre undergoing isometric twitches were measured. During fibre shortening, the intensity decreased rapidly and the fine structure pattern preserved its shape and moved swiftly away from the undiffracted laser beam. The fine structure patterns of the contracting and resting fibre were nearly identical. The ratio of intensities of the contracting and resting fibre of the same sarcomere length was determined as a function of the time elapsed after fibre stimulation. The time-resolved intensity ratio increased with sarcomere length and became unity when sarcomere length was between 3.5 m and 3.7 m. A diffraction theory based on the sarcomere unit was developed. It contained a parameter describing the strength of filament interaction. The comparison between the theory and data shows that the initial intensity drop during contraction is primarily due to filament interactions. At a later stage of contraction, sarcomere disorder becomes the major component causing the intensity to decrease. Diffraction models which use the Debye-Waller formalism to explain the intensity decrease are discussed. The sarcomere-unit diffraction model is applied to previously reported intensity measurements from active fibres.  相似文献   

15.
16.
Eccentric and posteccentric force behaviour in human skeletal muscle and in isolated frog muscle fibres was studied by imposing stretch-and-hold loading conditions during contractions with maximal voluntary effort or under tetanic stimulation in the isolated preparations. The investigations on human muscle were made on the forearm flexors of a group of kayak racers (n = 16; age: 17-22 years) and of schoolgirls (n = 15; age: 17-18 years) with both groups participating in a strength-training programme over 4 (kayak racers) or 3 (girls) months. Half of the training regime consisted of eccentric elements. In the isolated muscle fibres, it could be shown that in the posteccentric hold phase the enhanced force decayed exponentially to the original isometric value with a mean time-constant of 0.35 s (10 degrees C) and of 0.23 (20 degrees C). In the forearm flexor of human subjects similar results were obtained not only qualitatively but even quantitatively (time constant of posteccentric force decay: 0.25-0.37 s). Strength training in both groups did not lead to an enhancement in maximal isometric force alone [mean increase in force 17 (SD 10)%], a well-known and generally accepted fact, but also to a parallel shift in eccentric [21 (SD 10)%] and posteccentric force level. The close similarity between the findings in isolated muscle fibres and in human muscle in situ suggests that the eccentric and posteccentric behaviour must be primarily ascribed to the contractile properties of the muscle fibres themselves. A three-element muscle model with variable visco-elastic properties would appear to be most suitable for simulating the experimental findings.  相似文献   

17.
18.
19.
A sample of bacterial pili was prepared from Escherichia coli. An X-ray diffraction pattern was obtained from an oriented wet gel specimen in 0.01 m-phosphate buffer (pH 7.0) packed in a capillary tube. Sixteen independent spots were observed with the spacing of the outermost being 4.2 Å. Analysis of the diffraction pattern shows that the arrangement of subunits in pili rods is strictly simple-helical with 3.145 units being present in one turn of the helix and the axial rise per unit being 8.09o Å.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号