首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The applicability of 9-aminoacridine as a probe of the surface potential of yeast cells is examined. Yeast cells are found to quench the fluorescence of the dye and it is shown that this quenching is caused by a decrease in the dye concentration in the bulk aqueous phase. Consistent with predictions of the Gouy-Chapman theory the dye is displaced from the surface of the yeast cells by addition of salts, the effectiveness of the salts being related to the valency of the cation: C3+ > C2+ > C1+. It is shown that 9-aminoacridine is predominantly bound by the plasma membrane of the cells. Only a minor part of the binding occurs in the cell wall, in line with the finding that enzymic removal does not significantly affect the binding of the dye to the cells. A single relationship for the distribution ratio of the dye between cells and medium with the ζ potential of the cells is found, irrespective of the way the ζ potential is changed, either by varying the pH or the Ca2+ concentration. It is argued that the electrostatic potentials probed by the dye are much higher than the corresponding ζ potentials and are of the same order of magnitude of the presumed discrete charge potentials experienced by cation transporters in the plasma membrane. It is concluded that 9-aminoacridine may be applied as a convenient and almost quantitative probe of the surface potential that effects the kinetics of ion uptake by the yeast cells.  相似文献   

2.
3.
Summary The anaerobic glucose uptake (at 20°, pH 3.5) by resting cells of Saccharomyces cerevisiae followed unidirectional Michaelis-Menten kinetics and was competitively inhibited by l-sorbose; K m and K i were respectively 5.6×10-4 m and 1.8×10-1 m; V max was 6.5×10-8 moles mg-1 min-1. The aerobic uptake of glucose by resting yeast was also inhibited by l-sorbose but did not follow unidirectional Michaelis-Menten kinetics. Glucose-limited growth in the chemostat of a respiration-deficient mutant of S. cerevisiae was competitively inhibited by l-sorbose. As predicted by theory for transport-limited growth in the chemostat (van Uden, 1967) the steady state glucose concentrations were linear functions of the l-sorbose concentrations with different slopes at different dilution rates; K m and K i were respectively 7.2×10-4 m and 1.8×10-1 m. It is concluded that glucose transport was the rate-limiting step of anaerobic fermentation of S. cerevisiae and of growth of the mutant and that l-sorbose is a competitive inhibitor of active glucose transport in this yeast. The latter conclusion is accommodated in the transport model of van Steveninck and Rothstein (1965).  相似文献   

4.
Outwardly oriented H+ gradients greatly enhanced thiamine transport rate in brush border membrane vesicles from duodenal and jejunal mucosa of adult Wistar rats. At a gradient pHin5:pHout7.5, thiamine uptake showed an overshoot, which at 15 sec was three times as large as the uptake observed in the absence of the gradient. Under the same conditions, the binding component of uptake accounted for only 10–13% of intravesicular transport. At the same gradient, the K m and J max values of the saturable component of the thiamine uptake curve after a 6 sec incubation time were 6.2 ± 1.4 μm and 14.9 ± 3 pmol · mg−1 protein · 6 sec−1 respectively. These values were about 3 and 5 times higher, respectively, than those recorded in the absence of H+ gradient. The saturable component of the thiamine antiport had a stoichiometric thiamine: H+ ratio of 1:1 and was inhibited by thiamine analogues, guanidine, guanidine derivatives, inhibitors of the guanidine/H+ antiport, and imipramine. Conversely, the guanidine/H+ antiport was inhibited by unlabeled thiamine and thiamine analogues; omeprazole caused an approximately fourfold increase in thiamine transport rate. In the absence of H+ gradient, changes in transmembrane electrical potential did not affect thiamine uptake. At equilibrium, the percentage membrane-bound thiamine taken up was positively correlated with the pH of the incubation medium, and increased from about 10% at pH 5 to 99% at pH 9. Received: 17 July 1997/Revised: 16 September 1997  相似文献   

5.
The distribution ratio of the lipophilic cation dibenzyldimethylammonium between the cells of Saccharomyces cerevisiae and the medium appears to reflect changes in the membrane potential in a way that is qualitatively correct: the addition of a proton conductor or of an agent which blocks metabolism causes an apparent depolarization of the cell membrane; monovalent cations cause also a lowering of the equilibrium distribution, whereas the addition of divalent cations results in an increase of the partition ratio.However, uptake of dibenzyldimethylammonium and probably also of other liophilic cations proceeds via the thiamine transport system of the yeast. Dibenzyldimethylammonium transport is inducible, like thiamine transport. A kinetic analysis of the mutual interaction between thiamine and dibenzyldimethylammonium uptake shows that these compounds share a common transport system; moreover, dibenzyldimethylammonium uptake is inhibited completely by thiamine disulfide, a competitive inhibitor of thiamine transport and dibenzyldimethylammonium uptake in a thiamine-transport mutant is reduced considerably.It is concluded that one should be cautious when using lipophilic cations to measure the membrane potential of cells of S. cerevisiae.  相似文献   

6.
Extracellular pH markedly influences the ability of yeast cells to discriminate between K+ and Na+, with K+ favored to a greater degree at low pH. Studies of the kinetics of uptake of individual alkali metal cations by fermenting yeast indicate three zones relative to pH. Between pH 6 and 8, H+ has no effect. Below pH 4, H+ competitively inhibits the transport of each cation. Between pH 4 and 6, H+ acts kinetically as a predominantly non-competitive inhibitor. Both effects can be reversed by increasing the concentrations of cations. However, the concentrations required to reverse the competitive effect are considerably lower than those required to reverse the apparently non-competitive effect. It is suggested that H+ and the alkali metal cations can combine with two sites, a transport or carrier site, and a second, non-transporting site that influences the maximal rate of transport. Because the non-competitive inhibitory effect of H+ is considerably greater on the other cations than on K+, the discrimination in favor of K+ is increased severalfold at low pH, beyond that predicted on the basis of the relative affinities for the transport site.  相似文献   

7.
8.
Previous communications from this laboratory have indicated that there exists a thiamine-binding protein in the soluble fraction of Saccharomyces cerevisiae which may be implicated to participate in the transport system of thiamine in vivo.In the present paper it is demonstrated that both activities of the soluble thiamine-binding protein and thiamine transport in S. cerevisiae are greatest in the early-log phase of the growth and decline sharply with cell growth. The soluble thiamine-binding protein isolated from yeast cells by conventional methods containing osmotic shock treatment appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The apparent Kd of the binding for thiamine was 29 nM which is about six fold lower than the apparent Km (0.18 μM) of thiamine transport. The optimal pH for the binding was 5.5, and the binding was inhibited reversibly by 8 M urea but irreversibly by 8 M urea containing 1% 2-mercaptoethanol. Several thiamine derivatives and the analogs such as pyrithiamine and oxythiamine inhibited to similar extent both the binding of thiamine and transport in S. cerevisiae, whereas thiamine phosphates, 2-methyl-4-amino-5-hydroxymethylpyrimidine and O-benzoylthiamine disulfide did not show similarities in the effect on the binding and transport in vivo. Furthermore, it was demonstrated by gel filtration of sonic extract from the cells that a thiamine transport mutant of S. cerevisiae (PT-R2) contains the soluble binding protein in a comparable amounts to that in the parent strain, suggesting that another protein component is required for the actual translocation of thiamine in the yeast cell membrane. On the other hand, the membrane fraction prepared from S. cerevisiae showed a thiamine-binding activity with apparent Kd of 0.17μM at optimal pH 5.0 which is almost the same with the apparent Km for the thiamine transport system. The membrane-bound thiamine-binding activity was not only repressible by exogenous thiamine in the growth medium, but as well as thiamine transport it was markedly inhibited by both pyrithiamine and O-benzoylthiamine disulfide. In addition, it was found that membrane fraction prepared frtom PT-R2 has the thiamine-binding activity of only 3% of that from the parent strain of S. cerevisiae.These results strongly suggest that membrane-bound thiamine-binding protein may be directly involved in the transport of thiamine in S. cerevisiae.  相似文献   

9.
In the facultatively anaerobic yeastSaccharomyces cerevisiae the uptake rate and the accumulation ratio of 2-aminoisobutyric acid was decreased by some 30% by Fenton's reagent (FR), a powerful source of OH… radicals. Likewise, the uptake of glutamic acid, leucine and arginine was diminished. The mediated diffusion of 6-deoxy-d-glucose was not affected. The H+ symport of maltose and trehalose was inhibited by some 40% both in the initial rate and in the accumulation ratio. FR had a dramatic inhibitory effect when present during preincubation with 50 mmol/L glucose. In the obligately aerobicLodderomyces elongisporus the uptake of all amino acids tested was decreased by 15–30%, that of 6-deoxy-d-glucose by about 10%. The initial rates of uptake of maltose and trehalose were depressed by FR by 40% and the acceleration of uptake observed after 8 min of incubation, was abolished by FR completely. Acidification rate of the external medium byS. cerevisiae in the presence of glucose or galactose was enhanced three-fold, that after subsequently added K+ was substantially decreased. FR appears to have a dual effect on sugar and amino acid transport processes in yeast: (1) it blocks carrier protein synthesis, (2) it inhibits the source of energy for transport. It does not appreciably affect the carrier proteins themselves.  相似文献   

10.
We have synthesized and characterized O-bromoacetylthiamine (BrAcThiamine), a new reagent for inactivating the thiamine transport system in Saccharomyces cerevisiae. A Lineweaver-Burk plot of data from the transport kinetic measurements showed that BrAcThiamine was a competitive inhibitor of thiamine transport in S. cerevisiae with a Ki value of 0.60 microM. Incubating BrAcThiamine with yeast cells at 40 degrees C in 0.05 M potassium phosphate buffer, pH 5.0, caused concentration- and time-dependently a remarkable loss of thiamine transport activity. The inactivating reaction of yeast thiamine transport by BrAcThiamine proceeded most effectively at pH 5.0, coinciding with the optimal pH of the transport activity. Thiamine and thiamine analogs (pyrithiamine and O-acetylthiamine) protected yeast thiamine transport activity against the inactivation by BrAcThiamine. In addition, it was found that a membrane fraction prepared from yeast cells treated with BrAcThiamine had a thiamine-binding activity only 20% of that from control cells without inactivating the binding activity of the soluble fraction. These results suggest that BrAcThiamine inactivates the uptake activity by irreversible binding to the binding site of carrier protein(s) in the thiamine transport system.  相似文献   

11.
13CNMR and 1HNMR studies revealed that aluminum citrate (Al-citrate) was metabolized intracellularly and that oxalic acid was an important product in the Al-stressed cells. This dicarboxylic acid was produced via the oxidation of glyoxylate, a precursor generated through the cleavage of isocitrate. In the control cells, citrate was biotransformed essentially with the aid of regular tricarboxylic cycle (TCA) enzymes. However, these control cells were able neither to uptake nor to metabolize Al-citrate. Al-stressed cells obtained at 38–40 h of growth showed maximal Al-citrate uptake and biotransforming activities. At least a fourfold increase in the activity of the enzyme isocitrate lyase (ICL, E. C. 4.1.3.1) has been observed in the Al-stressed cells compared with the control cells. The transport of Al-citrate was sensitive to p-dinitrophenol and sodium azide, but not to dicyclohexylcarbodiimide. Experiments with the dye 9-aminoacridine revealed that the translocation of Al-citrate led to an increase in intracellular pH. Thus, it appears that after the uptake of Al-citrate, this complex is metabolized intracellularly. Received: 13 August 2002 / Accepted: 4 September 2002  相似文献   

12.
Plasma membrane vesicles were isolated from homogenised yeast cells by filtration, differential centrifugation and aggregation of the mitochondrial vesicles at pH 4. As judged by biochemical, cell electrophoretic and electron microscopic criteria a pure plasma membrane vesicle preparation was obtained.The surface charge density of the plasma membrane vesicles is similar to that of intact yeast cells with an isoelectric point below pH 3. The mitochondrial vesicles have a higher negative surface charge density in the alkaline pH range. Their isoelectric point is near pH 4.5, where aggregation is maximal.The yield of vesicles sealed to K+ was maximal at pH 4 and accounted for about one third of the total vesicle volume.The plasma membrane vesicles demonstrate osmotic behaviour, they shrink in NaCl solutions when loosing K+.As in intact yeast cells the entry and exit of sugars like glucose or galactose in plasma membrane vesicles is inhibited by UO22+.Counter transport in plasma membrane vesicles with glucose and mannose and iso-counter transport with glucose suggests that a mobile carrier for sugar transport exists in the plasma membrane.After galactose pathway induction in the yeast cells and subsequent preparation of plasma membrane vesicles the uptake of galactose into the vesicles increased by almost 100% over the control value without galactose induction. This increase is explained by the formation of a specific galactose carrier in the plasma membrane.  相似文献   

13.
Acetate is effectively taken up by whole cells of Corynebacterium glutamicum via a specific carrier with a pH optimum of 8. The K m of acetate uptake was 50 μM and the V max 25–35 nmol/mg dw min. The activation energy was determined to be 70 kJ/mol. Acetate uptake was competitively inhibited by propionate with a K i of about 30 μM and blocked by addition of sulfhydryl reagents. The transport activity was clearly dependent on the membrane potential, but independent of the presence of Na+-ions. It is concluded that uptake of acetate proceeds by a secondary, proton coupled mechanism.  相似文献   

14.
A newly synthesized photoreactive thiamine derivative, 4-azido-2-nitrobenzoylthiamine was found to be a competitive inhibitor of the thiamine transport system in Saccharomyces cerevisiae, exhibiting an apparent Ki of 36 nM. When exposed to visible light, 4-azido-2-nitrobenzoylthiamine irreversibly inactivated the thiamine transport. 4-azido-2-nitrobenzoylthiamine-dependent photoinactivation of thiamine transport was partially protected by thiamine, but not by the nitrene-trapping reagent p-aminobenzoate. On the other hand, the irradiation of the yeast cells in the presence of 4-azido-2-nitrobenzoylthiamine did not significantly lead to inactivation of the biotin transport system. The results suggest that 4-azido-2-nitrobenzoylthiamine is a specific irreversible inhibitor of the thiamine transport system in Saccharomyces cerevisiae.  相似文献   

15.
The effects of the tertiary amines tetracaine, brucine and dibucaine on photophosphorylation and control of photosynthetic electron transport in isolated chloroplasts of Spinacia oleracea were investigated. Tertiary amines inhibited photophosphorylation while the related electron transport decreased to the rates, observed under non-phosphorylating conditions. Light induced quenching of 9-aminoacridine fluorescence and uptake of 14C-labelled methylamine in the thylakoid lumen declined in parallel with photophosphorylation, indicating a decline of the transthylakoid proton gradient. In the presence of ionophoric uncouplers such as nigericin, no effect of tertiary amines on electron transport was seen in a range of concentration where photophosphorylation was inhibited. Under the influence of the tertiary amines tested, pH-dependent feed-back control of photosystem II, as indicated by energy-dependent quenching of chlorophyll fluorescence, was unaffected or even increased in a range of concentration where 9-aminoacridine fluorescence quenching and photophosphorylation were inhibited. The data are discussed with respect to a possible involvement of localized proton flow pathways in energy coupling and feed-back control of electron transport.Abbreviations 9-AA 9-aminoacridine - J e flux of photosynthetic electron transport - PC photosynthetic control - pH1 H+ concentration in the thylakoid lumen - pmf proton motive force - P potential quantum yield of photochemistry of photosystem II (with open reaction centers) - Q A primary quinone-type electron acceptor of photosystem II - q Q photochemical quenching of chlorophyll fluorescence - q E energy-dependent quenching of chlorophyll fluorescence - q AA light-induced quenching of 9-amino-acridine fluorescence  相似文献   

16.
Summary The yeastRhodotorula gracilis accumulated glucuronate by an H+/symport. The transport was electroneutral, driven by the chemical gradient of protons pH. The observed stoichiometry amounted to 1 proton per molecule glucuronate. At pH 4, the half-saturation constantK T was at its lowest value (K T =8mm), whereas the maximal velocityV T reached a maximum (V T =15 nmol/min×mg dry wt). Monosaccharides competitively inhibited the uptake of glucuronate and vice versa. Hence, the two substrates share the same transport system. The steady-state accumulation of glucuronate reflected the course of the pH gradient. It is concluded that glucuronate is transported as an anionic substrate by the protonated carrier, the driving force being the chemical gradient of the H+ (pH). The ternary carrier/H+/glc-COOO-complex is electroneutral and independent of the membrane potential. Simultaneous uptake of organic acids (acetic or propionic acid) which is also energized by the pH gradient led to a noncompetitive inhibition of glucuronate transport. Thus, manipulation of the driving force, pH, reducedV T without affectingK T . Kinetic and energetic arguments are presented which stronly suggest that only the protonated carrier is catalytically active inR. gracilis.  相似文献   

17.
Valinomycin and nigericin prevented growth of 13 strains of the yeast Saccharomyces cerevisiae on non-fermentable substrate glycerol without affecting much fermentative growth on glucose. The two antibiotics did not induce swelling and lysis of yeast protoplasts in potassium acetate and did not modify uptake and release of Rb+ by the yeast cells. Both antibiotics were taken up by yeast cells at a relatively low rate. Nigericin accelerated the glucose-induced changes of fluorescence of a cyanine dye absorbed by yeast cells, which had been previously ascribed to a depolarization-repolarization cycle of the mitochondrial membrane. The data suggest that valinomycin and nigericin act as ionophores in the inner mitochondrial membrane and not in the plasma membrane of intact yeast cells.  相似文献   

18.
K+ is a competitive inhibitor of the uptake of the other alkali metal cations by yeast. Rb+ is a competitive inhibitor of K+ uptake, but Li+, Na+, and Cs+ act like H+. At relatively low concentrations they behave as apparent noncompetitive inhibitors of K+ transport, but the inhibition is incomplete. At higher concentrations they inhibit the remaining K+ transport competitively. Ca++ and Mg++ in relatively low concentrations partially inhibit K+ transport in an apparently noncompetitive manner although their affinity for the transport site is very low. In each case, in concentrations that produce "noncompetitive" inhibition, very little of the inhibiting cation is transported into the cell. Competitive inhibition is accompanied by appreciable uptake of the inhibiting cation. The apparently noncompetitive effect of other cations is reversed by K+ concentrations much higher than those necessary to essentially "saturate" the transport system. A model is proposed which can account for the inhibition kinetics. This model is based on two cation-binding sites for which cations compete, a carrier or transporting site, and a second nontransporting (modifier) site with a different array of affinities for cations. The association of certain cations with the modifier site leads to a reduction in the turnover of the carrier, the degree of reduction depending on the cation bound to the modifier site and on the cation being transported.  相似文献   

19.
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe2+ homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe2+ utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe2+ which was driven by the external Fe2+ concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Δ failed to show this rapid Fe2+ uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe2+ uptake rates. Cu2+ was transported at similar rates as Fe2+, while other divalent cations, such as Zn2+ and Cd2+ apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe2+ across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.  相似文献   

20.
The yeast Saccharomyces cerevisiae is a standard model system to study endocytosis. Here we describe the examination of a representative subset of deletion mutants to identify and locate steps in endocytic transport, endosomal/lysosomal acidification and in intracellular transport of hydrolases in non‐viral transfection processes. When transport in late endocytosis is inhibited, transfection efficiency is significantly enhanced. Similarly, transfection efficiency is enhanced when the pH‐value of the endosomal/vacuolar system is modified. Transfection efficiency is furthermore elevated when the Na+/K+ transport in the endosomal system is disturbed. Finally, we observe enhanced transfection efficiency in mutants disturbed in the CVT/autophagy pathway and in hydrolase transport to the vacuole. In summary, non‐viral transfection efficiency can be significantly increased by either (i) inhibiting the transport of endocytosed material before it enters the vacuole, or (ii) inducing a non‐natural pH‐value of the endosomal/vacuolar system, or (iii) slowing down degradative processes by inhibiting vacuolar hydrolases or the transport between Golgi and late endosome/vacuole. J. Cell. Biochem. 106: 327–336, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号