首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In adrenal zona glomerulosa cells, calcium entry is crucial for aldosterone production and secretion. This influx is stimulated by increases of extracellular potassium in the physiological range of concentrations and by angiotensin II (Ang II). The high threshold voltage-activated (L-type) calcium channels have been shown to be the major mediators for the rise in cytosolic free calcium concentration, [Ca2+]c, observed in response to a depolarisation by physiological potassium concentrations. Paradoxically, both T- and L-type calcium channels have been shown to be negatively modulated by Ang II after activation by a sustained depolarisation. While the modulation of T-type channels involves protein kinase C (PKC) activation, L-type channel inhibition requires a pertussis toxin-sensitive G protein. In order to investigate the possibility of additional modulatory mechanisms elicited by Ang II on L-type channels, we have studied the effect of PKC activation or tyrosine kinase inhibition. Neither genistein or MDHC, two strong inhibitors of tyrosine kinases, nor the phorbol ester PMA, a specific activator of PKC, affected the Ang II effect on the [Ca2+]c response and on the Ba2+ currents elicited by cell depolarisation with the patch-clamp method. We propose a model describing the mechanisms of the [Ca2+]c modulation by Ang II and potassium in bovine adrenal glomerulosa cells.  相似文献   

2.
Stimulation of platelets with thrombin leads to rapid degradation of inositol phospholipids, generation of diacylglycerol (DAG) and subsequent activation of protein kinase C (PKC). Previous studies indicated that prior activation of PKC with phorbol myristate acetate (PMA) desensitizes platelets to thrombin stimulation, as indicated by a decreased production of inositol phosphates and decreased Ca2+ mobilization. This suggests that PKC activation generates negative-feedback signals, which limit the phosphoinositide response. To test this hypothesis further, we examined the effects of PKC activators and inhibitors on thrombin-stimulated DAG mass formation in platelets. Pretreatment with PMA abolishes thrombin-stimulated DAG formation (50% inhibition at 60 nM). Pretreatment of platelets with the PKC inhibitors K252a or staurosporine potentiates DAG production in response to thrombin (3-4-fold) when using concentrations required to inhibit platelet PKC (1-10 microM). K252a does not inhibit phosphorylation of endogenous DAG or phosphorylation of a cell-permeant DAG in unstimulated platelets, indicating that DAG over-production is not due to inhibition of DAG kinase. Sphingosine, a PKC inhibitor with a different mechanism of action, also potentiates DAG formation in response to thrombin. Several lines of evidence indicate that DAG formation under the conditions employed occurs predominantly by phosphoinositide (and not phosphatidylcholine) hydrolysis: (1) PMA alone does not elicit DAG formation, but inhibits agonist-stimulated DAG formation; (2) thrombin-stimulated DAG formation is inhibited by neomycin (1-10 mM) but not by the phosphatidate phosphohydrolase inhibitor propranolol; and (3) no metabolism of radiolabelled phosphatidylcholine was observed upon stimulation by thrombin or PMA. These data provide strong support for a role of PKC in limiting the extent of platelet phosphoinositide hydrolysis.  相似文献   

3.
Protein kinase C delta (PKC delta) is activated through tyrosine phosphorylation and is involved in apoptosis induction in the H(2)O(2)-treated fibroblasts. In the human keratinocyte HaCaT cell line, ultraviolet radiation, which induces apoptosis, promoted tyrosine phosphorylation and activation of PKC delta, but neither enhanced threonine phosphorylation in the activation loop nor generated the catalytic fragment of the PKC isoform. Tyrosine phosphorylation of PKC delta was prevented by a radical scavenger, N-acetyl-l-cysteine, and by a tyrosine kinase inhibitor, genistein, in the ultraviolet-irradiated keratinocyte cell line. Ultraviolet radiation-induced apoptosis was attenuated by N-acetyl-l-cysteine and genistein as well as by a PKC inhibitor, bisindolylmaleimide I. These results indicate that reactive oxygen species generated by ultraviolet radiation enhance tyrosine phosphorylation of PKC delta, and the PKC isoform thus activated by the modification reaction contributes to induction of apoptotic cell death in keratinocytes.  相似文献   

4.
We have recently demonstrated that multiple signalling pathways are involved in thrombin-induced proliferation in rat astrocytes. Thrombin acts by protease-activated receptor-1 (PAR-1) via mitogen-activated protein kinase activity. Signalling includes both Gi/(betagamma subunits)-phosphatidylinositol 3-kinase and a Gq-phospholipase C/Ca2+/protein kinase C (PKC) pathway. In the present study, we investigated the possible protein tyrosine kinases which might be involved in thrombin signalling cascades. We found that, in astrocytes, thrombin can evoke phosphorylation of proline-rich tyrosine kinase (Pyk2) via PAR-1. This process is dependent on the increase in intracellular Ca2+ and PKC activity. Moreover, in response to thrombin stimulation Pyk2 formed a complex with Src tyrosine kinase and adapter protein growth factor receptor-bound protein 2 (Grb2), which could be coprecipitated. Furthermore, both thrombin-induced Pyk2 phosphorylation and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation can be attenuated by Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. From these data we conclude that PAR-1 uses Ca2+- and PKC-dependent Pyk2 to activate Src, thereby leading to ERK1/2 activation, which predominantly recruits Grb2 in rat astrocytes.  相似文献   

5.
We have previously shown that the c-Src tyrosine kinase is activated four- to fivefold when cultured keratinocytes differentiate following the elevation of intracellular calcium levels. In contrast to c-Src, another Src family tyrosine kinase, c-Yes, was rapidly inactivated in these same cells, despite its marked similarity in structure and enzymatic activity to c-Src. The inactivation of c-Yes was independent of the protein kinase C pathway, which is usually activated by elevation of intracellular calcium levels. The protein levels of c-Src and c-Yes were not altered, but the phosphotyrosine content of both proteins was greatly reduced. As has been demonstrated for c-Src, in vitro dephosphorylation of c-Yes by incubation with protein tyrosine phosphatases also resulted in its activation, not inactivation. In vitro reconstitution experiments showed that c-Yes can be inactivated by preincubation with a Ca(2+)-supplemented cell extract and that this inhibition was reversed by the addition of EGTA [ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid]. Gradient sedimentation of cell lysates showed that in cells treated with calcium and ionophore, c-Yes formed complexes with two distinct cellular proteins, whereas similar complexes were not seen in c-Src immunoprecipitates. One of these two proteins has the ability to inhibit c-Yes kinase activity in vitro. Finally, the Ca(2+)-dependent inactivation of c-Yes was observed in kidney tubular cells and fibroblasts, suggesting that the Ca(2+)-dependent regulation of c-Yes tyrosine kinase is not unique to keratinocytes. We postulate that c-Yes is inactivated through a Ca2+ -dependent association with cellular proteins, which seems to override its activation resulting from tyrosine dephosphorylation.  相似文献   

6.
《The Journal of cell biology》1993,120(6):1491-1499
Thrombin, a potent activator of cellular responses, proteolytically cleaves, and thereby activates its receptor. In the present study, we compared the effects of the thrombin receptor 14-amino acid peptide (TRP-14; SFLLRNPNDKYEPF), which comprises the NH2 terminus after cleavage of the thrombin receptor, and of the native alpha-thrombin on endothelial monolayer permeability. Addition of TRP-14 (1-200 microM) to bovine pulmonary artery endothelial cells increased [Ca2+]i in a dose-dependent manner. The peak increase in [Ca2+]i in response to 100 microM TRP-14 or 0.1 microM alpha-thrombin was similar (i.e., 931 +/- 74 nM and 1032 +/- 80 nM, respectively), which was followed by a slow decrease with t1/2 values of 0.73 and 0.61 min, respectively. Extracellular Ca2+ chelation with 5 mM EGTA abolished the sustained increases in [Ca2+]i induced by either TRP-14 or alpha-thrombin. alpha- thrombin (0.1 microM) increased transendothelial [125I]albumin permeability, whereas TRP-14 (1-100 microM) had no effect. Coincubation of 100 microM TRP-14 with 1 microM DIP-alpha-thrombin also did not increase permeability over control values. Stimulation of BPAEC with 0.1 microM alpha-thrombin induced translocation of protein kinase C (PKC) from the cytosol to the plasma membrane indicative of PKC activation, whereas TRP-14 had no effect at any concentration. TRP-14 at 100 microM desensitized BPAEC to thrombin-induced increases in [Ca2+]i and transendothelial permeability. The Ca2+ desensitization was reversed after approximately 60 min, and this recovery paralleled the recovery of the permeability response. These findings indicate that the TRP-14-induced Ca2+ mobilization in the absence of PKC activation is insufficient to increase endothelial permeability. In contrast, the increase in endothelial permeability after alpha-thrombin occurred in conjunction with Ca2+ mobilization as well as PKC activation. TRP-14 pretreatment prevented the alpha-thrombin-induced increase in endothelial permeability secondary to desensitization of the Ca2+ signal. The results suggest that combined cytosolic Ca2+ mobilization mediated by TRP-14 and PKC activation mediated by a TRP-14-independent pathway are dual signals responsible for the thrombin-induced increase in vascular endothelial permeability.  相似文献   

7.
8.
Rat glomerular mesangial cells (GMC) express P2Y(2) purinoceptors and respond to nucleotide stimuli with a transient increase in the cytosolic Ca(2+) concentration and the receptors desensitize upon repeated stimulation with nucleotide. We demonstrate that there is a cross-talk from the signaling of tyrosine kinase to P2Y(2) receptors. For most cells repeated applications of ATP completely abolished the response, as did activation of PKC with 500 nM PMA. In contrast, preincubation with the PKC inhibitor chelerythrine (100 nM) prevented desensitization. Desensitization after application of ATP was reversed by subsequent incubation with PDGF-BB (50 ng/ml) or insulin (660 mU/ml). We conclude that the desensitization is caused by phosphorylation due to PKC and is under the control of growth factors. The findings support the hypothesis that growth hormones potentiate nucleotides as proinflammatory mediators and we hypothesize that they have bearing on the hyperfiltration seen in diabetes.  相似文献   

9.
Human fibroblasts in culture will grow in serum-free medium containing serum replacement factors, but without protein growth factors, as long as the Ca2+ level is 1.0-2.0 mM. When the Ca2+ is reduced to 0.1 mM, the cells stop cycling, but they can be reinduced to cycle by raising the Ca2+ level to 1.0 mM Ca2+ or to higher concentrations that result in activation of mitogen-activated protein kinase (MAPK). We now report that exposure of human fibroblasts to extracellular Ca2+ increased the level of inositol (1,4,5)-trisphosphate in the cytoplasm and caused a transient rise in the concentration of intracellular free Ca2+. Ca2+-induced MAPK activation was partly abolished by treatment of the cells with pertussis toxin. It was also decreased by treatment of cells with thapsigargin, which depletes intracellular Ca2+ stores; with phorbol 12-myristyl 13-acetate (PMA), which down-regulates protein kinase C (PKC); with the calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide HCl (W-7), and calmidazolium (24571); as well as with lanthanum, a Ca2+ channel inhibitor. Ca2+ stimulation did not result in phosphorylation of the c-raf-1 protein. Our results suggest that extracellular Ca2+ stimulates MAPK activation through a pathway(s) involving a pertussis toxin-sensitive G protein, phospholipase C, intracellular free Ca2+, calmodulin, and PKC.  相似文献   

10.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase.  相似文献   

11.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients. However, the implication of thrombin in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study we investigated the effect of thrombin on cell proliferation and p42/p44 mitogen-activated protein kinase (MAPK) activation in human tracheal smooth muscle cells (TSMCs). Thrombin stimulated [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitor GF109203X, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and PI 3-kinase inhibitors wortmannin and LY294002. In addition, thrombin-induced [3H]-thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2), indicating that activation of MEK1/2 was required for these responses. Furthermore, overexpression of dominant negative mutants, RasN17 and Raf-301, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca(2+), PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in cultured human TSMCs.  相似文献   

12.
Modulation of low voltage-activated Ca(V)3 T-type calcium channels remains poorly characterized compared with high voltage-activated Ca(V)1 and Ca(V)2 calcium channels. Notably, it is yet unresolved whether Ca(V)3 channels are modulated by protein kinases in mammalian cells. In this study, we demonstrate that protein kinase A (PKA) and PKC (but not PKG) activation induces a potent increase in Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 currents in various mammalian cell lines. Notably, we show that protein kinase effects occur at physiological temperature ( approximately 30-37 degrees C) but not at room temperature ( approximately 22-27 degrees C). This temperature dependence could involve kinase translocation, which is impaired at room temperature. A similar temperature dependence was observed for PKC-mediated increase in high voltage-activated Ca(V)2.3 currents. We also report that neither Ca(V)3 surface expression nor T-current macroscopic properties are modified upon kinase activation. In addition, we provide evidence for the direct phosphorylation of Ca(V)3.2 channels by PKA in in vitro assays. Overall, our results clearly establish the role of PKA and PKC in the modulation of Ca(V)3 T-channels and further highlight the key role of the physiological temperature in the effects described.  相似文献   

13.
Rhim JH  Jang IS  Yeo EJ  Song KY  Park SC 《Aging cell》2006,5(6):451-461
Previously, we reported that lysophosphatidic acid (LPA)-induced adenosine 3',5'-cyclic monophosphate (cAMP) production by human diploid fibroblasts depends on the age of the fibroblasts. In this study, we examined the role of A-kinase anchoring proteins (AKAP) in the regulation of LPA-stimulated cAMP production in senescent fibroblasts. We found that levels of protein kinase C (PKC)-dependent AKAPs, such as Gravin and AKAP79, were elevated in senescent cells. Co-immunoprecipitation experiments revealed that Gravin and AKAP79 do not associate with adenylyl cyclase type 2 (AC2) but bind to AC4/6, which interacts with calcium-dependent PKCs alpha/beta both in young and senescent fibroblasts. When the expression of Gravin and AKAP79 was blocked by small interference RNA transfection, the basal level of cAMP was greatly reduced and the cAMP status after LPA treatment was also reversed. Protein kinase A showed a similar pattern in terms of its basal activity and LPA-dependent modulation. These data suggest that Gravin and to a lesser extent, AKAP79, may play important roles in maintaining the basal AC activity and in coupling the AC systems to inhibitory signals such as Gialpha in young cells, and to stimulatory signals such as PKCs in senescent cells. This study also demonstrates that Gravin is especially important for the long-term activation of PKC by LPA in senescent cells. We conclude that LPA-dependent increased level of cAMP in senescent human diploid fibroblasts is associated with increases in Gravin levels resulting in its increased binding with and activation of calcium-dependent PKC alpha/beta and AC4/6.  相似文献   

14.
G-protein-coupled receptor agonists (GPCAs) cause functional responses in endothelial cells including secretion, proliferation, and altering monolayer permeability. These events are mediated in part by activation of the p42/44 mitogen-activated protein kinase (MAPK) cascade. The cytosolic tyrosine kinase Pyk2 is postulated to link GPCA-induced changes in intracellular calcium to activation of the MAP kinase cascade. We have investigated the regulation of Pyk2 in human umbilical vein endothelial cells in response to GPCAs and show that (1) thrombin, a PAR-1 peptide, and histamine cause rapid concentration- and time-dependent phosphorylation on tyrosines 402 (Src kinase binding site), 881 (Grb2 binding site), and 580 (an autophosphorylation site), (2) thrombin-stimulated phosphorylation is dependent on intracellular calcium and independent of PKC and PI-3 kinase, and (3) inhibition of Src kinases has no significant effect on thrombin-stimulated phosphorylation, implying that tyrosine phosphorylation of Pyk2 is independent of Src binding.  相似文献   

15.
The elevated level of thrombin has been detected in the airway fluids of asthmatic patients and shown to stimulate cell proliferation in tracheal smooth muscle cells (TSMCs). However, the implication of thrombin in the cell proliferation was not completely understood. In this study, thrombin stimulated [3H]thymidine incorporation and p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation in a time- and concentration-dependent manner in TSMCs. Pretreatment of TSMCs with pertussis toxin (PTX) significantly inhibited [3H]thymidine incorporation and phosphorylation of MAPK induced by thrombin. These responses were attenuated by tyrosine kinase inhibitors genistein and herbimycin A, phosphatidyl inositide (PI)-phospholipase C (PLC) inhibitor U73122, protein kinase C inhibitor GF109203X, removal of Ca2+ by addition of BAPTA/AM plus EGTA, PI 3-kinase inhibitors wortmannin and LY294002, and inhibitor of MEK1/2 PD98059. Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by thrombin and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. These results conclude that the mitogenic effect of thrombin was mediated through the activation of Ras/Raf/MEK/MAPK pathway. Thrombin-mediated MAPK activation was modulated by PI-PLC, Ca2+, PKC, tyrosine kinase, and PI 3-kinase associated with cell proliferation in canine cultured TSMCs.  相似文献   

16.
PMA and thrombin were examined for their ability to activate Na+/H+ exchange in growth-arrested WS-1 human fibroblasts. PMA or thrombin caused a cytoplasmic alkalinization that required extracellular sodium and was sensitive to 1 mM amiloride, suggesting that the rise in pH was mediated by the Na+/H+ exchanger. However, PMA and thrombin activated Na+/H+ exchange by distinctly different mechanisms. The rate of cytoplasmic alkalinization caused by 30 nM PMA was slower than 10 nM thrombin. The PMA-induced pH change was sensitive to the protein kinase inhibitors staurosporine (50 nM) and H-7 (100 microM). No increase in intracellular calcium was observed after PMA treatment and the cytoplasmic alkalinization caused by PMA was not sensitive to the drug TMB8 (200 microM) or the intracellular calcium-chelator BAPTA. In contrast, the thrombin-induced rise in cytoplasmic pH was insensitive to 50 nM staurosporine and only partially reduced with 100 microM H-7. The thrombin-induced activation of Na+/H+ exchange was inhibited by 200 microM TMB8 or pretreatment with BAPTA. PMA caused translocation of PKC activity from a cytoplasmic to membrane fraction whereas thrombin did not. Pretreatment with 50 nM staurosporine significantly reduced measurable PKC activity with or without PMA treatment. PMA and thrombin were also examined for their ability to induce DNA synthesis in growth-arrested WS-1 human fibroblasts. Unlike thrombin, PMA did not stimulate [3H]-thymidine incorporation in cells serum-deprived for 48 hours. In addition, PMA inhibited thrombin-induced DNA synthesis when added at the same time or as late as 10 hours after thrombin addition. Therefore, thrombin and PMA activate Na+/H+ exchange by distinct pathways, but only the thrombin-induced pathway correlates with a mitogenic response.  相似文献   

17.
Experiments using confocal laser microscopy on the rat osteosarcoma cell line (ROS 17/2.8) indicate that mechanical stimulation elicits pronounced [Ca2+](i)transients in the MS (mechanically stimulated) cell, which then propagate to the NB (neighbouring) cells. Experiments with Ca(2+)-free solutions or gadolinium suggest that Ca(2+)-influx through stretch-sensitive channels is required. When intracellular stores are depleted with thapsigargin, mechanical stimulation was able to evoke a Ca(2+)transient of reduced amplitude that disappeared entirely after subsequent blocking of Ca(2+)-influx. Heptanol inhibited intercellular propagation of the Ca(2+)transient, demonstrating the involvement of gap junctions in the propagation of the Ca(2+)transient in ROS cells. PKC activation has only a small inhibitory effect, while inhibition of PKC or tyrosine kinase was ineffective. PKA activation reduced the amplitude of the [Ca2+](i)-rise in NB cells, and decreased the percentage of responsive cells. Cells grown in 50mM glucose for 72h presented only a very limited decrease of the Ca(2+)-rise during mechanical stimulation in the MS and NB cells compared to control conditions. PKC downregulation in high glucose did not modulate this effect.The results of our experiments indicate that PKC or sustained high glucose concentrations do not affect gap junctional communication in ROS cells, while activation of PKA has an inhibitory effect. This might indicate that osteoblastic dysfunction in diabetes could be directly related to the high glucose concentrations and not to inhibition of the intercellular communication.  相似文献   

18.
Metabolic responses induced by thrombin in human umbilical vein endothelial cells (HUVECs) were investigated by using the cytosensor technique. Thrombin increased the extracellular acidification rate of endothelial cells, measured as an index of metabolic activity with a cytosensor microphysiometer, in a concentration-dependent fashion with an EC(50) of 1.27+/-0.59 IU/ml, which was abolished by the MAP kinase inhibitor PD98059. When intracellular Ca(2+) was chelated or PKC was inactivated, PD98059 failed to abolish the thrombin-induced acidification rate response in HUVECs. In addition, the tyrosine kinase inhibitor genistein, PKC inhibitor calphostin C, and Na(+)/H(+)exchanger antagonist MIA also partly inhibited thrombin-induced acidification rate responses. It is suggested that thrombin stimulated rapid metabolic responses via MAP kinase in HUVECs, which are calcium- and PKC-dependent.  相似文献   

19.
Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.  相似文献   

20.
Basic or acidic fibroblast growth factor (FGF), alone, was found to be as potent as alpha-thrombin to reinitiate DNA synthesis in G0-arrested Chinese hamster lung fibroblasts (CCL39). Basic FGF at 50 ng/ml or thrombin at 1 unit/ml rapidly initiated early events such as cytoplasmic alkalinization (0.2-0.3 pH units), rise in cytoplasmic Ca2+, phosphorylation of ribosomal protein S6 and increased c-myc expression, followed by a 30-40-fold increase in labeled nuclei. Whereas thrombin is a potent activator of phospholipase C as judged by the rapid release of inositol trisphosphate, inositol bisphosphate and by the massive accumulation of total inositol phosphate (IP) in the presence of 20 mM Li+, FGF failed to induce the breakdown of polyphosphoinositides in quiescent CCL39 cells. Indeed, no inositol trisphosphate nor inositol bisphosphate could be detected in response to FGF; in presence of Li+ the total IP release never exceeded 8% of the IP released by the action of thrombin. Two additional findings indicated that FGF and thrombin activate different signaling pathways. First, we found that, in contrast to thrombin, the FGF-induced rise in the cytoplasmic free Ca2+ concentration measured by quin-2 fluorescence, is strictly dependent upon the presence of Ca2+ in the external medium. Second, we found that FGF failed to activate protein kinase C as judged by the epidermal growth factor-receptor binding assay. Treatment of the cells with either thrombin or phorbol esters, rapidly inhibited 125I-labeled epidermal growth factor binding (50-60%). Basic or acidic FGF had no effect. We conclude that: the FGF-receptor signaling pathway is not coupled to phospholipase C activation, and early mitogenic events and reinitiation of DNA synthesis can be initiated independently of inositol lipid breakdown and protein kinase C activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号