首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By partial synthesis insulin analogues were prepared in which the amino acid in position 1 of the A chain was permuted. Glycine in position A 1 was exchanged for leucine, tert.- butyloxycarbonylvaline, valine, proline, lysine as well as glutamic acid. Two pathways of partial synthesis were followed: Firstly, des-1-glycine-A-chain S-sulfonate was reacted with active esters of tert.-butyloxycarbonylamino acids. The ensuing modified A-chains were combined with natural B-chain to give A1-permuted insulins. In the second procedure, the preparation of tris-Boc-[A1-leucine]insulin was accomplished by reaction of Boc-leucine N-hydroxysuccinimide ester with NalphaB1,NepsilonB29-bis(tert.-butyloxycarbonyl)-des-A1-glycine-insulin. The protected insulin derivative had been prepared by combination of des-glycine-A-chain with Nalpha1,Nepsilon29-bis(tert.-butyloxycarbonyl)-B-chain. The deprotected analogues differed considerably in their CD-spectra from insulin and possessed low in vitro biological activities of 2.5-17%. Crystallization attempts failed. Thus, the introduction of side chains in position A1 distorts the conformation sterically and decreases the biological activity.  相似文献   

2.
The bifunctional reagents, oxalyl-(Met-ONp)2 and malonyl-(Met-ONp)2 have been prepared and investigated as reversible cross-linking reagents for insulin and model compounds. The removal of the cross-linking residues was demonstrated by the cyanogen bromide cleavage of oxalyl-(Met-Phe-OMe)2 and malonyl-(Met-Phe-OMe)2. Zinc-insulin reacted with a molar equivalent of oxalyl-(Met-ONp)2 or malonyl-(Met-ONp)2 in presence of excess triethylamine to yield oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin, respectively. In these derivatives the N-terminal phenylalanine (B1 residue) was free. Thus the cross-link was between A1 and B29 residues in insulin. All three disulfide bonds of these insulin derivatives undergo reduction with tributylphosphine to give six sulfhydryls. Air-oxidation of reduced oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin in 0.05 M disodium phosphate, pH 9.5, yielded products which were indistinguishable from oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin respectively, as measured by physicochemical and biological methods. Cyanogen bromide cleavage of reduced and reoxidized malonyl-(Met)2-insulin in 70% formic acid regenerated insulin quantitatively, but only 40% of insulin was determined from similar treatment of oxalyl-(Met)2-insulin. The regenerated insulins exhibited the biological activity of native insulin. These studies strongly suggest that disulfide bonds formed during oxidation of reduced oxalyl-(Met)2-insulin and malonyl-(Met)2-insulin are identical to those found in insulin.  相似文献   

3.
[SerB24]-insulin, the second structurally abnormal mutant insulin, and [SerB25]-insulin were semisynthesized and were studied for receptor binding and biological activity. Receptor binding and biological activity determined by its ability to increase 2-deoxy-glucose uptake in rat adipocytes were 0.7-3% of native insulin for [SerB24]-insulin and 3-8% for [SerB25]-insulin. Negative cooperative effect of these analogues was also markedly decreased. Immunoreactivity of [SerB24]-insulin was decreased whereas that of [SerB25]-insulin was normal. Markedly decreased receptor binding of [SerB24]-insulin appeared to be due to substitution of hydrophobic amino acid, Phe, with a polar amino acid, Ser, at B24.  相似文献   

4.
In the present study, we describe the specificity and the autoradiographic distribution of insulin binding sites in the rat central nervous system (CNS) after in vitro incubation of brain sections with [125I]-14A insulin. Increasing concentrations of unlabeled insulin produced a dose-dependent inhibition of [125I]-insulin binding which represented 92 +/- 2% displacement with 3 X 10(-5) M, whatever the brain sections tested. Half-maximum inhibition with native insulin was obtained with 2.2 X 10(-9) M, with 10(-7) M proinsulin whereas glucagon had no effect. Under our experimental conditions, no degradation of [125I]-insulin was observed. Autoradiograms obtained by apposition of LKB 3H-Ultrofilm showed a widespread distribution of [125I]-insulin in rat CNS. However, quantitative analysis of the autoradiograms with 10(-10) M of labeled insulin, showed a high number of [125I]-insulin binding sites in the choroid plexus, olfactory areas, in both cerebral and cerebellar cortices, the amygdaloid complex and in the septum. In the hippocampal formation, the dorsal dentate gyrus and various subfields of CA1, CA2 and CA3 were labeled. Moreover, arcuate, dorso- and ventromedial nuclei of the hypothalamus contained high concentrations of [125I]-insulin whereas a low density was observed in the mesencephalon. The metabolic role of insulin in the CNS is supported by the large distribution of insulin binding sites in the rat brain. However, the presence of high affinity binding sites in selective areas involved in perception and integrative processes as well as in the regulation of both feeding behavior and neuroendocrine functions, suggests a neuromodulatory role of insulin in the brain.  相似文献   

5.
Using (A14-125I)-insulin as a tracer, insulin proteolytic activity in rat liver was found to be localized both to the cytosol and the endoplasmic reticulum. The membrane-associated activity was highly latent (70-80%). Both cytosolic and particulate activities had similar Km values and Mr of approx. 300 000 by gel filtration. Both were strongly inhibited by diamide (90%), but were unaffected by leupeptin or pepstatin. A comparison of the subcellular distributions with various 125I-isomers of insulin as tracers showed that both particulate and cytosolic activities were highest with (A14-125I)-insulin.  相似文献   

6.
Substitution of A1-glycine of insulin by L-amino acids yields in analogues with low biological activity. With D-amino acids in A1 biological activity is essentially retained. Synthesis of [A1-L-tryptophan]- and [A1-D-tryptophan]-insulin should provide information about the position of the side chains of L- and D-amino acids relative to A19-tyrosine, e.g. by evaluation of intramolecular resonance energy transfer between the fluorescent side chains. [A1-D-Tryptophan]-insulin exhibits full biological activity.  相似文献   

7.
通过化学半合成从天然猪胰岛素得到[B1-Ala,B2-Ala]胰岛素。这一胰岛素类似物经聚丙烯酰胺凝胶电泳和HPLC鉴定证明是均一的,氨基酸组成与理论值相符生物活性测定结果表明:[B1-Ala,B2-Ala]-胰岛素的体内活力与天然猪胰岛素相同,而与人胎盘细胞膜胰岛素受体的结合能力为天然猪胰岛素的132%。这一结果进一步说明胰岛素B链N端肽段参子与受体相互作用。此外,[B1-Ala,B2-Ala]-胰岛素的免疫活性很低,远小于天然猪胰岛素的4%。  相似文献   

8.
[D-PheB24]- and [D-PheB25]-human insulin were semisynthesized from porcine insulin by enzyme assisted coupling method. Receptor binding ability of [D-PheB24]- and [D-PheB25]-insulin was 180% and 4%, respectively, of that of human insulin. Increased affinity of [D-PheB24]-insulin was ascribed to markedly decreased dissociation rate in binding to human cultured lymphocytes. Negative cooperative effect of [D-PheB24]insulin was also increased to twice of that of human insulin. Biological activity of these analogues was assessed by 2-deoxy-glucose uptake studies in isolated adipocytes and the ability of [D-PheB24]- and [D-PheB25]-insulin was 140% and 4%, respectively, of that of human insulin. These findings suggest that B25 L-Phe is more crucial for receptor binding and that [D-PheB24]-insulin is the first semisynthetic insulin to show increased affinity for insulin receptors.  相似文献   

9.
Reaction of bis-[2-(succinimidooxycarbonyloxy)ethyl]sulfone [SO2(Eoc-ONSu)2] with insulin in 1N NaHCO3/dimethylformamide forms NalphaA1,NepsilonA1,NepsilonB29-2,2'-sulfonylbis(ethoxycarbonyl)insulin [SO2(Eoc)2-insulin] in 20 - 35% yield. The product can be purified by partition chromatography. After cleavage of the disulfide bridges, reoxidation in very dilute solution reconstitutes about 60% of the original insulin activity. Cleavage of the crosslinking moiety can be achieved with 0.5N NaOH at 0 degrees C in only a few seconds, rendering a biologically fully active insulin.  相似文献   

10.
The preparation of N,N-bis(methylsulfonylethoxycarbonyl)insulins is described. In an aequeous buffer at pH 5.8 selectivity of the reaction of insulin with 20 equivalents of N-(methysulfonylethoxycarbonyloxy)succinimide (Msc-ONSu) leads very specifically to N alpha A 1,-N alpha B 1-(Msc)2 - insulin. The product can be isolated in a yield of 60%. Using N alpha A 1-citraconylinsulin the N alpha B 1, NEB29-(Msc)2 -insulin can be prepared in a yield of 40% based on insulin.  相似文献   

11.
Synthesis and characterization of poly(ethylene glycol)-insulin conjugates   总被引:8,自引:0,他引:8  
Human insulin was modified by covalent attachment of short-chain (750 and 2000 Da) methoxypoly (ethylene glycol) (mPEG) to the amino groups of either residue PheB1 or LysB29, resulting in four distinct conjugates: mPEG(750)-PheB1-insulin, mPEG(2000)-PheB1-insulin, mPEG(750)-LysB29-insulin, and mPEG(2000)-LysB29-insulin. Characterization of the conjugates by MALDI-TOF mass spectrometry and N-terminal protein sequence analyses verified that only a single polymer chain (750 or 2000 Da) was attached to the selected residue of interest (PheB1 or LysB29). Equilibrium sedimentation experiments were performed using analytical ultracentrifugation to quantitatively determine the association state(s) of insulin derivatives. In the concentration range studied, all four of the conjugates and Zn-free insulin exist as stable dimers while Zn(2+)-insulin was exclusively hexameric and Lispro was monomeric. In addition, insulin (conjugate) self-association was evaluated by circular dichroism in the near-ultraviolet wavelength range (320-250 nm). This independent method qualitatively suggests that mPEG-insulin conjugates behave similarly to Zn-free insulin in the concentration range studied and complements results from ultracentrifugation studies. The physical stability/resistance to fibrillation of mPEG-insulin conjugates in aqueous solution were assessed. The data proves that mPEG(750 and 2000)-PheB1-insulin conjugates are substantially more stable than controls but the mPEG(750 and 2000)-LysB29-insulin conjugates were only slightly more stable than commercially available preparations. Circular dichroism studies done in the far ultraviolet region confirm insulin's tertiary structure in aqueous solution is essentially conserved after mPEG conjugation. In vivo pharmacodynamic assays reveal that there is no loss in biological activity after conjugation of mPEG(750) to either position on the insulin B-chain. However, attachment of mPEG(2000) decreased the bioactivity of the conjugates to about 85% of Lilly's HumulinR formulation. The characterization presented in this paper provides strong testimony to the fact that attachment of mPEG to specific amino acid residues of insulin's B-chain improves the conjugates' physical stability without appreciable perturbations to its tertiary structure, self-association behavior, or in vivo biological activity.  相似文献   

12.
B1-(4-Azido-salicyloyl)-[B1-biocytin,B2-lysine]insulin was synthesized by double Edman degradation of A1,B29-Msc2-insulin and stepwise acylation at the N-terminus of the B-chain. This derivative is homogeneous in RP-HPLC and has a biological in vitro activity of 20% and receptor binding of 15%, relative to insulin. Radioiodination and HPLC gave the B1-labelled 125I-derivative (I) as well as the 4 isomers with 125I-labelled tyrosine (A14, A19, B16, B26). UV-induced crosslinking of I with insulin receptors led to specific labelling of the alpha-subunit (Mr 130,000). The peptide bond LysB2-AspB3 is completely cleavable by trypsin (EC 3.4.21.4). I is thus a new tool for the analysis of the hormone-binding region by making possible the isolation of tryptic, biotinylated receptor fragments labelled by the dipeptide 125I-4-azidosalicyloyl-biocytinyl-Lys.  相似文献   

13.
As a function of buffer pH, [125I]-insulin binding to rat mammary cells, rat adipocytes, or membranes prepared therefrom, at 4 degrees or 20 degrees C, showed 2 peaks in different buffers. Specific insulin binding at the pH 7.7. peak (100 +/- 11%) was lower than at pH 8.8 (140 +/- 17%) with no change in nonspecific binding. Although insulin stimulation of glucose uptake into fat cells was highest at pH 7.5, this response was also seen at pH 8.6. Scatchard affinity profiles, or in the kinetics of dissociation. Insulin degradation (< 10%) and binding to insulin antibody were similar over the pH range of 7 to 9.  相似文献   

14.
A radioactive photosensitive insulin analogue, 125I-N epsilon B29-(4-azido-2-nitrophenyl-acetyl)insulin, was covalently bound to the receptors of isolated rat adipocytes by irradiation with UV light. This caused a stimulation of lipogenesis. The relative potency of the covalent complexes to that of normal reversible complexes was calculated by comparing the amounts of radioactivity required to be covalently or reversibly bound by adipocytes to cause the same levels of stimulation. For several different occupancies , this relative potency was constant at 50 +/- 3%. Previous studies had shown that the relative potency of covalently bound 125I-N alpha B2-(4-azido-2- nitrophenylacetyl )des- PheB1 -insulin was only 25 +/- 4% under identical conditions. This demonstrates that the sites of crosslinking have a marked effect on the potency of the covalent hormone-receptor complex. It appears that attachment through the C-terminus of the B-chain leads to a better stabilization of the biologically active form than linking through the more flexible N-terminus.  相似文献   

15.
We have developed a radioimmunoassay for human insulin receptor. Serum from a patient with Type B severe insulin resistance was used as anti-insulin receptor antiserum. Pure human placental insulin receptor was used as reference preparation and 125I labeled pure insulin receptor as trace. The radioimmunoassay was sensitive (limit of detection less than 17 fmol), reproducible (inter and intra-assay coefficients of variation 12.5% and 1.6% respectively) and specific (no crossreactivity with pure placental IGF-1 receptor, insulin and glucagon). The anti-insulin receptor antibody was, however, able to differentiate between insulin receptor from human placenta and from rat liver. To determine the number of insulin binding sites per receptor, we measured insulin binding (by insulin binding assay) and insulin receptor mass (by radioimmunoassay) in solubilized aliquots from 5 human placentas. The molar ratio of insulin binding to receptor mass was 0.86 +/- 0.12 when binding was determined with monoiodinated 125I-Tyr A 14-insulin. It was 1.94 +/- 0.27 when randomly iodinated 125I-insulin was used. In conclusion, using a sensitive, reproducible and specific radioimmunoassay, we have measured insulin receptor mass independent of insulin binding. Our data are most compatible with binding of one insulin molecule per human placental insulin receptor.  相似文献   

16.
A fatty liver is associated with fasting hyperinsulinemia, which could reflect either impaired insulin clearance or hepatic insulin action. We determined the effect of liver fat on insulin clearance and hepatic insulin sensitivity in 80 nondiabetic subjects [age 43 +/- 1 yr, body mass index (BMI) 26.3 +/- 0.5 kg/m(2)]. Insulin clearance and hepatic insulin resistance were measured by the euglycemic hyperinsulinemic (insulin infusion rate 0.3 mU.kg(-1).min(-1) for 240 min) clamp technique combined with the infusion of [3-(3)H]glucose and liver fat by proton magnetic resonance spectroscopy. During hyperinsulinemia, both serum insulin concentrations and increments above basal remained approximately 40% higher (P < 0.0001) in the high (15.0 +/- 1.5%) compared with the low (1.8 +/- 0.2%) liver fat group, independent of age, sex, and BMI. Insulin clearance (ml.kg fat free mass(-1).min(-1)) was inversely related to liver fat content (r = -0.52, P < 0.0001), independent of age, sex, and BMI (r = -0.37, P = 0.001). The variation in insulin clearance due to that in liver fat (range 0-41%) explained on the average 27% of the variation in fasting serum (fS)-insulin concentrations. The contribution of impaired insulin clearance to fS-insulin concentrations increased as a function of liver fat. This implies that indirect indexes of insulin sensitivity, such as homeostatic model assessment, overestimate insulin resistance in subjects with high liver fat content. Liver fat content correlated significantly with fS-insulin concentrations adjusted for insulin clearance (r = 0.43, P < 0.0001) and with directly measured hepatic insulin sensitivity (r = -0.40, P = 0.0002). We conclude that increased liver fat is associated with both impaired insulin clearance and hepatic insulin resistance. Hepatic insulin sensitivity associates with liver fat content, independent of insulin clearance.  相似文献   

17.
Human [LeuB-24]- and [LeuB-25]-insulins were semi-synthesized from porcine insulin by an enzyme-assisted coupling method. The receptor-binding ability of [LeuB-24]- and [LeuB-25]-insulins was 30--48% and 2--5% respectively of that of human insulin. There was no significant difference in degradation between human insulin and these analogues on incubation with isolated adipocytes. The decreased affinity of these analogues was due to an increased dissociation rate rather than a change in the association rate of their binding to human cultured lymphocytes. The negative co-operative effect of [LeuB-24]- and [LeuB-25]-insulin was decreased to 50 and 1% respectively of that of human insulin at a concentration of 100 ng/ml. The ability of [LeuB-24]- and [LeuB-25]-insulin to stimulate 2-deoxyglucose uptake in isolated rat adipocytes was 35 and 4% respectively of that of human insulin. These analogues did not have an antagonistic effect on the biological activity of human insulin. The immunoreactivity of [LeuB-25]insulin was similar to that of porcine or human insulin, whereas [LeuB-24]insulin demonstrated decreased binding to anti-(porcine insulin) antibodies. These findings suggest that B-chain phenylalanine-25 residue is more crucial for receptor binding and negative co-operativity, whereas the B-chain phenylalanine-24 residue may play a more important role in binding to anti-insulin antibody.  相似文献   

18.
The trypsin-catalyzed coupling of bovine (Boc)2-desoctapeptide (B23-B30)-insulin with synthetic octapeptides, H-Gly-X2-X3-X4-Thr-Pro-Lys(Boc)-Thr-OH (X2 = Phe or Ala, X3 = Phe or Ala, X4 = Tyr or Ala), followed by deprotection and purification produced the [AlaB24, ThrB30]-, [AlaB25, ThrB30]-, and [AlaB26, ThrB30]-analogs of bovine insulin in yields of 32, 35, and 32%, respectively. The biological activity of these analogs decreased in the order, normal insulin ([ThrB30]-bovine insulin) = AlaB26-insulin > AlaB25-insulin > AlaB24-insulin, as assayed for receptor binding and some other biological effects, in contrast with the corresponding Leu-analogs of human insulin, in which the activity decreased in the order, normal insulin > LeuB24-insulin > LeuB25-insulin. The affinity to insulin antibodies greatly diminished in both AlaB24-insulin and LeuB24-insulin but not in the B25-substituted analogs. The CD spectra of the Leu- and the Ala-analogs were compared with those of normal insulins to show that no apparent correlation seems to exist between the decrease in biological activity and the conformational changes observed in solution. The effects of organic solvents on the peptide-bond equilibrium and on the stability of trypsin are also discussed.  相似文献   

19.
Insulin regulates the activity of both protein kinases and phosphatases. Little is known concerning the subcellular effects of insulin on phosphatase activity and how it is affected by insulin resistance. The purpose of this study was to determine insulin-stimulated subcellular changes in phosphatase activity and how they are affected by insulin resistance. We used an in vitro fatty acid (palmitate) induced insulin resistance model, differential centrifugation to fractionate rat adipocytes, and a malachite green phosphatase assay using peptide substrates to measure enzyme activity. Overall, insulin alone had no effect on adipocyte tyrosine phosphatase activity; however, subcellularly, insulin increased plasma membrane adipocyte tyrosine phosphatase activity 78 +/- 26% (n = 4, P < 0.007), and decreased high-density microsome adipocyte tyrosine phosphatase activity 42 +/- 13% (n = 4, P < 0.005). Although insulin resistance induced specific changes in basal tyrosine phosphatase activity, insulin-stimulated changes were not significantly altered by insulin resistance. Insulin-stimulated overall serine/threonine phosphatase activity by 16 +/- 5% (n = 4, P < 0.005), which was blocked in insulin resistance. Subcellularly, insulin increased plasma membrane and crude nuclear fraction serine/threonine phosphatase activities by 59 +/- 19% (n = 4, P < 0. 005) and 21 +/- 7% (n = 4, P < 0.007), respectively. This increase in plasma membrane fractions was inhibited 23 +/- 7% (n = 4, P < 0. 05) by palmitate. Furthermore, insulin increased cytosolic protein phosphatase-1 (PP-1) activity 160 +/- 50% (n = 3, P < 0.015), and palmitate did not significantly reduce this activity. However, palmitate did reduce insulin-treated low-density microsome protein phosphatase-1 activity by 28 +/- 6% (n = 3, P < 0.04). Insulin completely inhibited protein phosphatase-2A activity in the cytosol and increased crude nuclear fraction protein phosphatase-2A activity 70 +/- 29% (n = 3, P < 0.038). Thus, the major effects of insulin on phosphatase activity in adipocytes are to increase plasma membrane tyrosine and serine/threonine phosphatase, crude nuclear fraction protein phosphatase-2A, and cytosolic protein phosphatase-1 activities, while inhibiting cytosolic protein phosphatase-2A. Insulin resistance was characterized by reduced insulin-stimulated serine/threonine phosphatase activity in the plasma membrane and low-density microsomes. Specific changes in phosphatase activity may be related to the development of insulin resistance.  相似文献   

20.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号